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May 6  We will study limits, continiuty, differentiability, and integration for functions 𝑓 : ℝ𝑁 → ℝ
(or 𝑓 : ℝ𝑁 → ℝ𝑀 ) of several variables.

Recall that if 𝑆1, ⋯, 𝑆2 are sets, the Cartesian product 𝑆1 × ⋯ × 𝑆𝑁 , also denoted by ∏𝑁
𝑖=1 𝑆𝑖

is the set

𝑆1 × … × 𝑆𝑁 = {(𝑥1, 𝑥2, …, 𝑥𝑛) : 𝑥𝑗 ∈ 𝑆𝑗, 𝑗 = 1, …, 𝑁}.

Topology

Definition 1.1 :  The 𝑁 -dimensional Euclidian space is the 𝑁 -fold Cartesian product

ℝ𝑁 = ℝ × ⋯ × ℝ⏟⏟⏟⏟⏟
N times

.

An element 𝑥 = (𝑥1, …, 𝑥𝑛) ∈ ℝ𝑁  is called a vector or simply a point in ℝ𝑁 ; the
numbers 𝑥1, …, 𝑥𝑛 are called the coordinates of 𝑥.

Recall :  That ℝ𝑁  is a vector space over ℝ with coordinate-wise operations: that is, if
𝑥 = (𝑥1, …, 𝑥𝑛), 𝑦 = (𝑦1, …, 𝑦𝑛) ∈ ℝ𝑁 , and 𝜆 ∈ ℝ, we have

𝑥 + 𝑦 = (𝑥1 + 𝑦1, …, 𝑥𝑁 + 𝑦𝑁) ∈ ℝ𝑁 (addition)

𝜆𝑥 = (𝜆𝑥1, …, 𝜆𝑥𝑁) ∈ ℝ𝑁 (scalar multiplication)

The zero vector at the origin is the vector

⃗0 = 0 = (0, …, 0).

If 𝑁 = 1, ℝ𝑁 = ℝ. If 𝑁 = 2, ℝ2 is a plane. And when 𝑁 = 3, we have the three-dimensional
space.

The Euclidian inner product and distance in ℝ𝑁

In ℝ, the distance of 𝑥 ∈ ℝ to 0 is the absolute value

|𝑥| = {𝑥 if 𝑥 ≥ 0
−𝑥 if 𝑥 < 0

.

For 𝑥, 𝑦 ∈ ℝ𝑛 the distance of 𝑥 and 𝑦 is |𝑥 − 𝑦|.

If 𝑁 = 2, there is a natural notion of distance of a vector 𝑥 = (𝑥1, 𝑥2) to 0. The norm of 𝑥 is

‖𝑥‖ = √𝑥2
1 + 𝑥2

2.

For 𝑥, 𝑦 ∈ ℝ, we can define the distance of 𝑥 and 𝑦 by

‖𝑥 − 𝑦‖ = √(𝑥1 − 𝑦1)
2 + (𝑥2 − 𝑦2)

2.

We have that ‖𝑥 − 𝑦‖2 = ‖𝑥‖2 + ‖𝑦‖2 if and only if the “dot product” of 𝑥 and 𝑦, 𝑥 ⋅ 𝑦 =
𝑥1𝑦1 + 𝑥2𝑦2 is 0, since

𝑥 ⋅ 𝑦 = ‖𝑥‖ ‖𝑦‖ cos(𝜃)

(follows from law of cosines).

We extend this to ℝ𝑁 .

Definition 1.2 :  The Euclidian inner product (or the dot product) on ℝ𝑁  is the function

⋅ : ℝ𝑁 × ℝ𝑛 → ℝ

(𝑥, 𝑦) ↦ 𝑥 ⋅ 𝑦 = ∑
𝑁

𝑖=1
𝑥𝑖𝑦𝑖.

Proposition 1.3 :  The dot product satisfies for all 𝑥, 𝑦, 𝑧 ∈ ℝ𝑁 , 𝜆 ∈ ℝ the following
properties:
1. 𝑥 ⋅ 𝑥 ≥ 0 (⋅ pointwise definite)
2. 𝑥 ⋅ 𝑥 = 0 if and only if 𝑥 = 0
3. 𝑥 ⋅ 𝑦 = 𝑦 ⋅ 𝑥 (symmetric)
4. 𝑥 ⋅ (𝑦 + 𝑧) = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧 (distributivity)
5. (𝜆𝑥) ⋅ 𝑦 = 𝜆(𝑥 ⋅ 𝑦)

Properties 3. to 5. imply that ⋅ is bilinear.

Definition 1.4 :  For 𝑥 = (𝑥1, …, 𝑥𝑁) ∈ ℝ𝑁 , we define the (Euclidian) norm of 𝑥 by

‖𝑥‖ =
√

𝑥 ⋅ 𝑥 = √∑
𝑁

𝑖=1
𝑥2

𝑖 .

The function ‖·‖ : ℝ𝑁 → [0, ∞) satisfies the following properties:
(N1) ‖𝑥‖ ≥ 0
(N2) ‖𝑥‖ = 0 if and only if 𝑥 = 0
(N3) ‖𝜆𝑥‖ = |𝜆| ‖𝑥‖

We would like to show that ‖·‖ satisfies the triangle inequality:

‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖

for all 𝑥, 𝑦 ∈ ℝ𝑁 . For this we need the Cauchy-Schwartz inequality.

Theorem 1.5 (Cauchy-Schwartz one) :  For all 𝑥, 𝑦 ∈ ℝ𝑁 , we have

|𝑥 ⋅ 𝑦| ≤ ‖𝑥‖ ‖𝑦‖.

Moreover, |𝑥 ⋅ 𝑦| = ‖𝑥‖ ‖𝑦‖ if and only if 𝑥 = 𝑡𝑦 and 𝑦 = 𝑡𝑥 for some 𝑡 ∈ ℝ.

Proof :  We may assume 𝑥, 𝑦 ≠ 0. For each 𝑡 ∈ ℝ, we know

(𝑥 − 𝑡𝑦) ⋅ (𝑥 − 𝑡𝑦) ≥ 0.

Thus (by dot product properties),

𝑝(𝑡) ≔ 𝑥 ⋅ 𝑥 − 2𝑡(𝑥 ⋅ 𝑦) + 𝑡2(𝑦 ⋅ 𝑦) ≥ 0

for all 𝑡 ∈ ℝ. Notice that 𝑝 is a quadratic function of 𝑡. This implies that 𝑝 can have at
most one real root and hence the corresponding discriminant Δ = 𝑏2 − 4𝑎𝑐 satisfies
Δ ≤ 0. Hence

4(𝑥 ⋅ 𝑦)2 − 4 ‖𝑥‖2 ‖𝑦‖2 ≤ 0 ⟹ |𝑥 ⋅ 𝑦| ≤ ‖𝑥‖ ‖𝑦‖.

For the last part of the statement, equality |𝑥 ⋅ 𝑦| = ‖𝑥‖ ‖𝑦‖ implies that 𝑝 has a real
root say 𝑡0 ∈ ℝ. Then

𝑝(𝑡0) = (𝑥 − 𝑡0𝑦) ⋅ (𝑥 − 𝑡0𝑦) = 0

gives that 𝑥 − 𝑡0𝑦 = 0 ⟹ 𝑦 = 𝑡0𝑥 yields the equality

|𝑥 ⋅ 𝑦| = ‖𝑥‖ ‖𝑦‖.

□

Corollary 1.6 (Triangle inequality) :  For all 𝑥, 𝑦 ∈ ℝ𝑁 , we have

‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖.

Proof :  We have

‖𝑥 + 𝑦‖2 = (𝑥 + 𝑦) ⋅ (𝑥 + 𝑦) = ‖𝑥‖2 + ‖𝑦‖2 + 2(𝑥 ⋅ 𝑦)

≤ ‖𝑥‖2 + ‖𝑦‖2 + 2 ‖𝑥‖ ‖𝑦‖

= (‖𝑥‖ + ‖𝑦‖)2.

The result follows by taking the square root. □
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Theorem 1.7 :  The Euclidian norm ‖ ⋅ ‖ : ℝ𝑁 → [0, ∞) satisfies for all 𝑥, 𝑦 ∈ ℝ𝑁  and
𝜆 ∈ ℝ the following:

(N1) ‖𝑥‖ ≥ 0
(N2) ‖𝑥‖ = 0 if and only if 𝑥 = 0
(N3) ‖𝜆𝑥‖ = |𝜆| ‖𝑥‖
(N4) ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ (triangle inequality)
(N5) |‖𝑥‖ − ‖𝑦‖| ≤ ‖𝑥 − 𝑦‖ (reverse triangle inequality)

Proof :  exercise. □

Definition 1.8 :  For 𝑥, 𝑦 ∈ ℝ𝑁 , we define the distance of 𝑥 and 𝑦 by

𝑑(𝑥, 𝑦) ≔ ‖𝑥 − 𝑦‖.

Notice (N4) implies that

𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)

for all 𝑧 ∈ ℝ𝑁 .

Angles between vectors in ℝ𝑁

In ℝ2 we know that 𝑥 ⋅ 𝑦 = ‖𝑥‖ ‖𝑦‖ cos 𝜃, where 𝜃 is the angle between 𝑥 and 𝑦. In ℝ𝑁 , the
Cauchy-Schwarz inequality implies that if 𝑥, 𝑦 ≠ 0 then

−1 ≤
𝑥 ⋅ 𝑦

‖𝑥‖ ‖𝑦‖
≤ 1.

We can find a unique 𝜃 ∈ [0, 𝜋] such that cos 𝜃 = 𝑥⋅𝑦
‖𝑥‖ ‖𝑦‖ . We define 𝜃 to be the angle between

𝑥 and 𝑦. We say that 𝑥 and 𝑦 is orthogonal is 𝜃 = 𝜋
2 .

Topology on ℝ𝑁 : open sets and closed sets

In topology, we study the notion of closeness (limits, convergence, continuity) through the
collection of open sets/closed sets.

Definition 1.9 :

a) The open ball in ℝ𝑁  of radius 𝑟 > 0 centered at 𝑥 ∈ ℝ𝑁  is the set

𝐵𝑟(𝑥) = {𝑦 ∈ ℝ𝑁 | ‖𝑥 − 𝑦‖ < 𝑟}.

Other notation: 𝐵(𝑥, 𝑟).
b) The closed ball in ℝ𝑁  of radius 𝑟 > 0 centered at 𝑥 ∈ ℝ𝑁  is the set

𝐵𝑟[𝑥] = {𝑦 ∈ ℝ𝑁 | ‖𝑥 − 𝑦‖ ≤ 𝑟}.

Other notation: 𝐵[𝑥, 𝑟].

Example :

a) In ℝ, 𝐵𝑟(𝑥) = (𝑥 − 𝑟, 𝑥 + 𝑟) and 𝐵𝑟[𝑥] = [𝑥 − 𝑟, 𝑥 + 𝑟].
b) In ℝ2 we have:

c) In ℝ3 the open ball consists of all interior points of a sphere.

Definition 1.10 :

a) We say that 𝑈 ⊆ ℝ𝑁  is open if for all 𝑥 ∈ 𝑈 , there exists 𝜀 > 0 (depending on 𝑥)
such that 𝐵𝜀(𝑥) ⊆ 𝑈 .

b) We say that 𝐹 ⊆ ℝ𝑁  is closed if

𝐹 𝑐 = {𝑦 ∈ ℝ𝑁 | 𝑦 ∉ 𝐹}

(the compliment of 𝐹 ) is open.

Example :  ⌀ and ℝ𝑁  are open, ⌀ and ℝ𝑁  are closed, so we say ⌀ and ℝ𝑁  are
“clopen.”

Proposition 1.11 :

a) The open ball 𝐵𝑟(𝑥) is open.
b) The closed ball 𝐵𝑟[𝑥] is closed.

Proof :

a) Let 𝑦 ∈ 𝐵𝑟(𝑥) be fixed. We need to find 𝜀 > 0 such that 𝐵𝜀(𝑦) ⊆ 𝐵𝑟(𝑥). We know
that for 𝑧 ∈ ℝ𝑁 ,

𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).

Take 𝜀 = 𝑟 − 𝑑(𝑥, 𝑦), then 𝜀 > 0 and 𝐵𝜀(𝑦) ⊆ 𝐵𝑟(𝑥).

b) We use the inverse triangle inequality

‖𝑥 − 𝑧‖ = ‖𝑥 − 𝑦 + 𝑦 − 𝑧‖ ≥ | ‖𝑥 − 𝑦‖ − ‖𝑧 − 𝑦‖ |.

We need to show

𝐵𝑟[𝑥]𝑐 = {𝑦 ∈ ℝ𝑁 | ‖𝑦 − 𝑥‖ > 𝑟}

is open. Choose 𝑦 such that ‖𝑥 − 𝑦‖ > 𝑟. Set 𝜀 = ‖𝑥 − 𝑦‖ − 𝑟 > 0. Let 𝑧 ∈ 𝐵𝜀(𝑦).
Then ‖𝑧 − 𝑦‖ < 𝜀 ⟹ −‖𝑧 − 𝑦‖ > −𝜀. By (N5) we have

‖𝑥 − 𝑧‖ ≥ | ‖𝑥 − 𝑦‖ − ‖𝑧 − 𝑦‖ | > ‖𝑥 − 𝑦‖ + 𝑟 − ‖𝑥 − 𝑦‖ = 𝑟.

hence 𝑧 ∈ 𝐵𝑟[𝑥]𝑐 is needed which means 𝐵𝜀(𝑦) ⊆ 𝐵𝑟[𝑥]𝑐.

□

Theorem 1.12 (Permanence properties of open sets) :

a) The union of an arbitrary collection of open sets is open. Precisely, if Λ are set
indices and {𝐸𝛼 | 𝛼 ∈ Λ} are open sets, then

𝐸 ≔ ⋃
𝛼∈Λ

𝐸𝛼

is open.
b) The intersection of a finite collection of open sets is open.

Proof :

a) Let 𝑥 ∈ 𝐸. Then there exists 𝛼′ ∈ Λ such that 𝑥 ∈ 𝐸𝛼′ . Since 𝐸𝛼′  is open, there
exists some 𝜀 > 0 (depending on 𝐸𝛼′ ) such that

𝐵𝜀(𝑥) ⊆ 𝐸𝛼′ ⊆ ⋃
𝛼∈Λ

𝐸𝛼 = 𝐸.

Hence 𝐸 is open.
b) Let 𝐸1, 𝐸2, …, 𝐸𝑛 be open sets in ℝ𝑁  and we let

𝐸 ≔ ⋂
𝑛

𝑖=1
𝐸𝑖.

Let 𝑥 ∈ 𝐸. For 𝑖 = 1, …, 𝑛 we can find 𝜀 > 0 such that 𝐵𝜀𝑖
(𝑥) ⊆ 𝐸𝑖. Set

𝜀 ≔ min{𝜀𝑖 | 𝑖 = 1, …, 𝑛}.

Then 𝐵𝜀(𝑥) ⊆ ⋂𝑛
𝑖=1 𝐸𝑖 = 𝐸 giving that 𝐸 is open.

□

Note :  We may take the minimum of all 𝜀𝑖 since there are a finite number of them.

Example :  The intersection of an infinite collection of open sets need not be open: take
for each 𝑛 ≥ 1, 𝐸𝑛 = 𝐵 1

𝑛
(𝑥), then 𝐸𝑛 is open. And 𝐸 ≔ ⋂∞

𝑛=1 𝐸𝑛 = {𝑥} is not open.
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Theorem 1.13 (De Morgan's Law) :

Let {𝐸𝛼 | 𝛼 ∈ Λ} be a collection of subsets of a set 𝐴. Then
a) (⋃𝛼∈Λ 𝐸𝛼)

𝑐
= ⋂𝛼∈Λ 𝐸𝑐

𝛼,
b) (⋂𝛼∈Λ 𝐸𝛼)

𝑐
= ⋃𝛼∈Λ 𝐸𝑐

𝛼.

Corollary 1.14 (Properties of closed sets) :

a) The intersection of an arbitrary collection of closed sets is closed.
b) The union of a finite collection of closed sets is again closed.

Proof :  Follows from Theorem 1.12 and Theorem 1.13. □

Example :

a) The sphere

𝜕𝐵𝑟(𝑥) = {𝑦 ∈ ℝ𝑁 | ‖𝑦 − 𝑥‖ = 𝑟}

is closed because 𝜕𝐵𝑟(𝑥) = 𝐵𝑟[𝑥] ∩ 𝐵𝑟(𝑥)𝑐.
b) The union of an infinite collection of closed sets need not be closed: take 𝐹𝑛 ≔ { 1

𝑛}
(or 𝐹𝑛 = {( 1

𝑛 , …, 1
𝑛)} ⊆ ℝ𝑁 ). Then 𝐹𝑛 is closed. But ⋃∞

𝑛=1 𝐹𝑛 is not closed.

Exercise :  Show the above.

Sets that are neither open nor closed

In general, an arbitrary subset 𝑆 of ℝ𝑁  need not be open nor closed.

a) In ℝ, the half-open interval [𝑎, 𝑏), 𝑎 < 𝑏 is neither open nor closed.
b) Let 𝑆 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 | 𝑦2 + 𝑧2 = 1, 𝑥 > 0}. Then 𝑆 is neither closed nor open.

To see that it is not open, take 𝑝 = (1, 0, 1) ∈ 𝑆. Let 𝜀 > 0. We claim that 𝐵𝜀(𝑝) ∩ 𝑆𝑐 ≠
⌀. Let 𝑐 = (1, 0, 1 + 𝜀

2), then 𝑐 ∉ 𝑆:

𝑦2 + 𝑧2 = (1 +
𝜀
2
)

2
> 1

and ‖𝑐 − 𝑝‖ = 𝜀
2 < 𝜀, so that 𝑐 ∈ 𝐵𝜀(𝑝).

To see that it is not closed, take 𝑝 = (0, 0, 1) ∈ 𝑆𝑐. Given 𝜀 > 0, take 𝑐 = (𝜀
2 , 0, 1). Then

𝑐 ∈ 𝑆 and 𝑐 ∈ 𝐵𝜀(𝑝), so that 𝐵𝜀(𝑝) ⊈ 𝑆𝑐 ⟹ 𝑆𝑐 is not open. Thus 𝑆 is not closed.

Definition 1.15 :

Let 𝑆 ⊆ ℝ𝑁 .

a) A point 𝑝 ∈ ℝ𝑁  is called a cluster point (or accumulation point) of 𝑆 if for every 𝜀 >
0 we have (𝐵𝜀(𝑝) ∖ {𝑝}) ∩ 𝑆 ≠ ⌀.

Equivalently, for every open set 𝑈  with 𝑝 ∈ 𝑈  there exists 𝑥 ∈ 𝑆 ∩ 𝑈 , for 𝑥 ≠ 𝑝.

b) We denote by 𝑆′ the set of all cluster points of 𝑆.

Example :

a) Every point 𝑝 ∈ ℝ𝑁  is a cluster point of

ℚ𝑁 ≔ {(𝑥1, …, 𝑥𝑁) ∈ ℝ𝑁 | 𝑥𝑖 ∈ ℚ, 𝑖 = 1, …, 𝑁}.

To see this, let 𝑝 = (𝑝1, …, 𝑝𝑁) ∈ ℝ𝑁  and let 𝜀 > 0. By density of ℚ in ℝ, for each
𝑖 = 1, …, 𝑁  we can find 𝑞𝑖 ∈ ℚ, 𝑞𝑖 ≠ 𝑝𝑖 such that |𝑞𝑖 − 𝑝𝑖| < 𝜀√

𝑁
. Set 𝑞 =

(𝑞1, …, 𝑞𝑁) ∈ ℚ𝑁 . Then

‖𝑝 − 𝑞‖ = √∑
𝑁

𝑖=1
(𝑝𝑖 − 𝑞𝑖)

2 < 𝜀

and 𝑝 ≠ 𝑞. Hence 𝑞 ∈ (𝐵𝜀(𝑝) ∖ {𝑝}) ∩ ℚ𝑁  as needed.
b) Let 𝑆 = {𝑥1, …, 𝑥𝑁} be a finite set in ℝ𝑁 . Then 𝑆 has no cluster points. That is,

𝑆′ = ⌀. To see this, take 𝑝 ∈ ℝ𝑁 , and take 𝜀 > 0 with

𝜀 < min{‖𝑝 − 𝑥‖ | 𝑥 ∈ 𝑆, 𝑥 ≠ 𝑝}.

Then (𝐵𝜀(𝑝) ∖ {𝑝}) ∩ 𝑆 = ⌀.

Theorem 1.16 (Characterization of closed sets) :  Let 𝐹 ⊆ ℝ𝑁 . The following are
equivalent:

1. 𝐹  is closed,
2. 𝐹 ′ ⊆ 𝐹 .

Proof :
1. ⟹ 2. Suppose 𝐹  is closed. Let 𝑝 ∈ 𝐹 𝑐. We will show that 𝑝 ∉ 𝐹 ′. Since 𝐹  is closed,

𝐹 𝑐 is open. Hence there exists 𝜀 > 0 such that 𝐵𝜀(𝑝) ⊆ 𝐹 𝑐. In particular, 𝐵𝜀(𝑝) ∩
𝐹 = ⌀, giving that 𝑝 ∉ 𝐹 ′ ⟹ 𝐹 ′ ⊆ 𝐹 .

2. ⟹ 1. Suppose 𝐹 ′ ⊆ 𝐹 . We will show that 𝐹 𝑐 is open. Take 𝑝 ∈ 𝐹 𝑐. Then 𝑝 ∉ 𝐹 ′. So
there exists 𝜀 > 0 such that (𝐵𝜀(𝑝) ∖ {𝑝}) ∩ 𝐹 = ⌀. Thus 𝐵𝜀(𝑝) ∩ 𝐹 = ⌀ since 𝑝 ∈
𝐹 𝑐, proving 𝐵𝜀(𝑝) ⊆ 𝐹 𝑐 and 𝐹 𝑐 is open.

□

Definition 1.17 :  Let 𝑆 ⊆ ℝ𝑁 . We define the closure of 𝑆 by

𝑆 ≔ 𝑆 ∪ 𝑆′.

Note :  𝑆 is the smallest closed set containing 𝑆.
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Proposition 1.18 :  Let 𝑆 ⊆ ℝ𝑁 . Then

𝑆′ = 𝑆′.

In particular, 𝑆 is closed.

Corollary 1.19 :  𝑆 is the smallest closed set containing 𝑆, that is, if 𝑆 ⊆ 𝐹  and 𝐹
closed, then 𝑆 ⊆ 𝐹 .

Proof :  See assignment 1. □

Definition 1.20 :

Let 𝑆 ⊆ ℝ𝑁 .

a) We say that a point 𝑝 ∈ ℝ𝑁  is a boundary point of 𝑆 if for every 𝜀 > 0 we have

𝐵𝜀(𝑝) ∩ 𝑆 ≠ ⌀ and 𝐵𝜀(𝑝) ∩ 𝑆𝑐 ≠ ⌀.

The boundary 𝜕𝑆 is the set of all boundary points of 𝑆.
b) We say that 𝑝 ∈ 𝑆 is an interior point of 𝑆 if there exists 𝜀 > 0 such that 𝐵𝜀(𝑝) ⊆ 𝑆.

The interior of 𝑆, denoted by 𝑆° (or int(𝑆)) is the set of all interior points of 𝑆.

Note :  We always have 𝑆° ⊆ 𝑆 ⊆ 𝑆.

Example :  Let 𝑆 = (0, 1] ∪ {2}. We have:

• 𝜕𝑆 = {0, 1, 2},
• 𝑆′ = [0, 1],
• 𝑆° = (0, 1),
• 𝑆 = [0, 1] ∪ {2}.

Proposition 1.21 :  Let 𝑥 ∈ ℝ𝑁  and 𝑟 > 0. Then:

a) 𝜕𝐵𝑟(𝑥) = 𝜕𝐵𝑟[𝑥] = {𝑦 ∈ ℝ𝑁 | ‖𝑦 − 𝑥‖ = 𝑟},
b) 𝐵𝑟(𝑥) = 𝐵𝑟[𝑥].

Proof :

a) Let 𝑝 ∈ ℝ𝑁  with ‖𝑝 − 𝑥‖ = 𝑟. It suffices to show that for every 𝜀 > 0, we have

𝐵𝜀(𝑝) ∩ 𝐵𝑟(𝑥) ≠ ⌀ and 𝐵𝜀(𝑝) ∩ 𝐵𝑟[𝑥]𝑐 ≠ ⌀

since 𝐵𝑟(𝑥) and 𝐵𝑟[𝑥]𝑐 are open.

Let 𝜆 > 0. Since ‖𝑝 − 𝑥‖ = 𝑟 we have

‖𝜆(𝑝 − 𝑟)‖ = 𝜆𝑟.

We set 𝑧𝜆 = 𝑥 + 𝜆(𝑝 − 𝑥). Notice that if 𝜆 < 1, then 𝑧𝜆 ∈ 𝐵𝑟(𝑥), and 𝜆 > 1 then
𝑧𝜆 ∈ 𝐵𝑟[𝑥]𝑐.

Take 0 < 𝜆 < 1 with 1 − 𝜆 < 𝜀
𝑟 . Then 𝑧𝜆 ∈ 𝐵𝑟(𝑥) and

‖𝑧𝜆 − 𝑝‖ = ‖𝑥 + 𝜆(𝑝 − 𝑥) − 𝑝‖
= (1 − 𝜆)‖𝑝 − 𝑥‖

<
𝜀𝑟
𝑟

= 𝜀.

To get 𝑧𝜆 ∈ 𝐵𝜀(𝑝) ∩ 𝐵𝑟[𝑥]𝑐, take 𝜆 > 1 with 𝜆 − 1 < 𝜀
𝑟 . Then 𝑧𝜆 ∈ 𝐵𝑟[𝑥]𝑐 and as

above 𝑧𝜆 ∈ 𝐵𝑟(𝑥). This shows that

𝜕𝐵𝑟(𝑥) = 𝜕𝐵𝑟[𝑥] = {𝑦 | ‖𝑦 − 𝑥‖ = 𝑟}.
b) We know that 𝐵𝑟(𝑥) = 𝐵𝑟(𝑥) ∪ 𝐵𝑟(𝑥)′. If 𝑝 ∈ 𝐵𝑟[𝑥]𝑐 then 𝑝 ∉ 𝐵𝑟(𝑥)′ because

𝐵𝑟[𝑥]𝑐 is open. So

𝐵𝑟(𝑥) ⊆ 𝐵𝑟[𝑥].

By part a), if 𝑝 ∈ ℝ𝑁  and ‖𝑝 − 𝑥‖ = 𝑟, then 𝑝 ∈ 𝜕𝐵𝑟(𝑥), and hence 𝑝 ∈ 𝐵𝑟(𝑥),
giving the reverse inclusion

𝐵𝑟[𝑥] ⊆ 𝐵𝑟(𝑥).

□

Proposition 1.22 :

Let 𝑆 ⊆ ℝ𝑁 . Then

a) 𝑆° is open, and 𝑆° = ⋃𝑈⊆𝑆
𝑈 open

𝑈

b) 𝑆° = 𝑆 ∖ 𝜕𝑆.

Proof :

a) Let 𝑥 ∈ 𝑆°. Since 𝑥 is an interior point of 𝑆, we can find 𝜀𝑥 > 0 such that 𝐵𝜀𝑥
(𝑥) ⊆

𝑆. If 𝑦 ∈ 𝐵𝜀𝑥
(𝑥), we can find 𝛿 > 0 such t hat 𝐵𝛿(𝑦) ⊆ 𝐵𝜀𝑥

(𝑥) ⊆ 𝑆 because 𝐵𝜀𝑥
(𝑥)

is open. Then 𝑦 is also an interior point of 𝑆, giving that 𝐵𝜀𝑥
(𝑥) ⊆ 𝑆° as needed.

This shows that 𝑆° is open and also

𝑆° = ⋃
𝑥∈𝑆°

𝐵𝜀𝑥
(𝑥) ⊆ ⋃

𝑈⊆𝑆
𝑈 open

𝑈.

In order to establish the reverse inclusion ⋃𝑈⊆𝑆
𝑈 open

𝑈 ⊆ 𝑆°, we let 𝑈 ⊆ 𝑆, 𝑈  open

and let 𝑥 ∈ 𝑈 . Since 𝑈  is open there exists 𝜀 > 0 such that 𝐵𝜀(𝑥) ⊆ 𝑈 ⊆ 𝑆, proving
that 𝑥 ∈ 𝑆°.

b) Let 𝑥 ∈ 𝑆°. Then there exists 𝜀 > 0 such that 𝐵𝜀(𝑥) ⊆ 𝑆. Hence 𝐵𝜀(𝑥) ∩ 𝑆𝑐 =
⌀ ⟹ 𝑥 ∉ 𝜕𝑆. This gives 𝑆° ⊆ 𝑆 ∖ 𝜕𝑆. For the reverse inclusion let 𝑥 ∈ 𝑆 ∖ 𝜕𝑆.
Then since 𝑥 ∉ 𝜕𝑆, we can find 𝜀 > 0 such that 𝐵𝜀(𝑥) ∩ 𝑆𝑐 = ⌀ ⟹ 𝐵𝜀(𝑥) ⊆ 𝑆,
giving that 𝑥 ∈ 𝑆°.

□

Note :  𝑆° is the largest open set contained in 𝑆.
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Theorem 1.23 :  Let 𝑆 ⊆ ℝ𝑁 . Then ℝ𝑁  is the disjoint union

ℝ𝑁 = 𝑆° ⊍ 𝜕𝑆 ⊍ (𝑆𝑐)°.

Proof :  Clearly 𝑆° ∩ (𝑆𝑐)° = ⌀ since 𝑆° ⊆ 𝑆 and (𝑆𝑐)° ⊆ 𝑆𝑐. If 𝑝 ∈ 𝑆° ∪ (𝑆𝑐)°, then
𝑝 ∉ 𝜕𝑆, hence the union 𝑆° ∪ 𝜕𝑆 ∪ (𝑆𝑐)° is disjoint. To see that ℝ𝑁 = 𝑆° ∪ 𝜕𝑆 ∪
(𝑆𝑐)°, let 𝑥 ∈ ℝ𝑁 . If 𝑥 ∈ 𝑆° ∪ (𝑆𝑐)° we are done. Otherwise, given 𝜀 > 0, we have
𝐵𝜀(𝑥) ∩ 𝑆𝑐 ≠ ⌀, and similarly 𝐵𝜀(𝑥) ∩ 𝑆 ≠ ⌀ because ∉ (𝑆𝑐)°. Since 𝜀 > 0 is
arbitrary, we deduce that 𝑥 ∈ 𝜕𝑆 as wanted. □

Corollary 1.24 :  For any 𝑆 ⊆ ℝ𝑁 , we have 𝑆 = 𝑆 ∪ 𝜕𝑆.

Proof :  exercise. □

Compactness

Compactness is an important concept in topology, especially in connection with continuity.

Definition 1.25 :

a) Let 𝑆 ⊆ ℝ𝑁 . An open cover of 𝑆 is a collection

𝑔 = {𝑔𝛼}𝛼∈Λ

of open subsets of ℝ𝑁  that covers 𝑆. That is,

𝑆 ⊆ ⋃
𝛼∈Λ

𝑔𝛼.

b) We say that 𝐾 ∈ ℝ𝑁  is compact if every open cover 𝑔 = {𝑔𝛼}𝛼∈Λ of 𝐾 admits a
finite subcover. That is, there exists a finite subcollection

𝑔′ = {𝑔𝛼𝑖
| 𝑖 = 1, …, 𝑛}

of sets from 𝑔 such that

𝐾 ⊆ ⋃
𝑛

𝑖=1
𝑔𝛼𝑖

.

Example :

a) If 𝑆 = {𝑥1, …, 𝑥𝑛} is finite, then 𝑆 is compact.

Proof :  Let 𝑔 = {𝑔𝛼}𝛼∈Λ be an open cover of 𝑆. Since 𝑆 ⊆ ⋃𝛼∈Λ 𝑔𝛼, for each
𝑖 = 1, …, 𝑛 we can find 𝑎𝑖 ∈ Λ such that 𝑥𝑖 ∈ 𝑔𝛼𝑖

. Set

𝑔′ = {𝑔𝛼𝑖
| 𝑖 = 1, …, 𝑛}.

Then 𝑔′ is a finite collection of sets from 𝑔 that covers 𝑆. Hence 𝑆 is compact.
□

b) Let 𝑟 > 0 and 𝑥 ∈ ℝ𝑁 . Then 𝐵𝑟(𝑥) is not compact.

Proof :  We need to find an open cover 𝑔 = {𝑔𝛼}𝛼∈Λ that admits no finite
subcover. Let 𝑘 ≥ 1 be such that 1

𝑘 < 𝑟. For each 𝑛 ≥ 𝑘 we set 𝑔𝑛 = 𝐵𝑟− 1
𝑛
(𝑥).

Then each 𝑔𝑛 is open and we set 𝑔 = {𝑔𝑛}𝑛≥𝑘. Then 𝑔 is an open cover of
𝐵𝑟(𝑥). We claim that 𝑔 admits no finite subcover. Looking for a contradiction,
suppose that

𝑔′ = {𝑔𝑛𝑖
| 𝑖 = 1, …, 𝑙} ⊆ 𝑔

is a finite subcover for 𝐵𝑟(𝑥). Let 𝑗 be such that 𝑛𝑗 = max{𝑛𝑖 | 𝑖 = 1, …, 𝑙}.
Then

𝐵𝑟(𝑥) ⊆ 𝑔𝑛𝑗
= 𝐵𝑟− 1

𝑛𝑗
(𝑥).

This is a contradiction because if 𝑢 ∈ ℝ𝑁  with ‖𝑢‖ = 1 and let 𝑟 − 1
𝑛𝑗

< 𝑞 <
𝑟, 𝑞 ∈ ℚ, then 𝑧 = 𝑥 + 𝑞𝑢 with 𝑧 ∈ 𝐵𝑟(𝑥) but 𝑧 ∉ 𝐵𝑟− 1

𝑛𝑗
(𝑥). □

Note :  The intuition for the above proof is to find a set of open balls around 𝑥
with radius that converge to 𝑟.

Proposition 1.26 :  Suppose 𝐾 ⊆ ℝ𝑁  is compact and 𝐹 ⊆ 𝐾 is closed. Then 𝐹  is
compact.

Proof :  Let 𝑔 = {𝑔𝛼}𝛼∈Λ be an open cover of 𝐹 . Then

𝐾 ⊆ 𝐹 ∪ 𝐹 𝑐 ⊆ ( ⋃
𝛼∈Λ

𝑔𝛼) ∪ 𝐹 𝑐,

so 𝑔 = 𝑔 ∪ {𝐹 𝑐} is an open cover of 𝐾 because 𝐹 𝑐 is open. Since 𝐾 is compact, 𝑔
admits a finite subcover

𝑔′ = {𝑔𝛼𝑖
| 𝑖 = 1, …, 𝑛}.

Now

𝐹 = 𝐹 ∩ 𝐾 ⊆ 𝐹 ∩ (⋃
𝑛

𝑖=1
𝑔𝛼𝑖

) = ⋃
𝑛

𝑖=1
𝐹 ∩ 𝑔𝛼𝑖

⊆ ⋃
𝑔∈𝑔′

𝑔≠𝐹𝑐

𝑔.

Setting 𝑔′ = 𝑔′ ∖ {𝐹 𝑐}, we see that 𝑔′ is a finite subcover of 𝐹  consisting of sets fro 𝑔.□

Definition 1.27 :  We will say that a set 𝑆 ⊆ ℝ𝑁  is bounded if ther exists 𝑛 ≥ 1 such
that

𝑆 ⊆ 𝐵𝑛[0].

Note :  We may as well let the radius be 𝑟 > 0, 𝑟 ∈ ℝ.

Theorem 1.28 :  Suppose 𝐾 ⊆ ℝ𝑁  is compact. Then 𝐾 is closed and bounded.

Proof :  Suppose 𝐾 is compact.

Boundedness: For each 𝑛 ≥ 1, let 𝑔𝑛 = 𝐵𝑛(0). Then 𝑔𝑛 ⊆ 𝑔𝑛+1, and each 𝑔𝑛 is open. Let
𝑔 = {𝑔𝑛}𝑛≥1, then 𝑔 is an open cover of 𝐾 . By compactness of 𝐾 , 𝑔 admits a finite
subcover

𝑔′ = {𝑔𝑛𝑖
| 𝑖 = 1, …, 𝑙}.

Let 𝑗 be such that

𝑛𝑗 = max{𝑛𝑖 | 𝑖 = 1, …, 𝑙}.

Then 𝐾 ⊆ 𝑔𝑛𝑗
= 𝐵𝑛𝑗

(0) ⊆ 𝐵𝑛𝑗
[0]. This shows that 𝐾 is bounded.

Closed: Let 𝑥 ∈ 𝐾𝑐. We need to find 𝜀 > 0 such that 𝐵𝜀(𝑥) ⊆ 𝐾𝑐. For each 𝑦 ∈ 𝐾 , we
set 𝜀𝑦 = ‖𝑥−𝑦‖

2 . Then 𝜀𝑦 > 0 because 𝑥 ∉ 𝐾 . By the reverse triangle inequality, we have
𝐵𝜀𝑦

(𝑥) ∩ 𝐵𝜀𝑦
(𝑦) = ⌀. For each 𝑦 ∈ 𝐾 we set 𝑔𝑦 = 𝐵𝜀𝑦

(𝑦). By compactness of 𝐾 , 𝑔
admits a finite subcover

𝑔′ = {𝑔𝑢𝑗
| 𝑗 = 1, …, 𝑛}.

Let 𝜀 ≔ min{𝜀𝑗 | 𝑗 = 1, …, 𝑛}. Then 𝜀 > 0 and we have

𝐵𝜀(𝑥) ∩ 𝐾 ⊆ 𝐵𝜀(𝑥) ∩ (⋃
𝑛

𝑗=1
𝐵𝜀𝑦𝑗

(𝑦𝑗))

= ⋃
𝑛

𝑗=1
𝐵𝜀(𝑥) ∩ 𝐵𝜀𝑦𝑗

(𝑦𝑗)

= ⋃
𝑛

𝑗=1
𝐵𝜀𝑦𝑗

(𝑥) ∩ 𝐵𝜀𝑦𝑗
(𝑦𝑗)

= ⌀

gives that 𝐵𝜀(𝑥) ⊆ 𝐾𝑐. □

Note :  This theorem implies that if 𝐹 ⊆ ℝ𝑁  is closed and 𝐾 ⊆ ℝ𝑁  is compact, then
𝐾 ∩ 𝐹  is compact by Proposition 1.26.
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Theorem 1.29 :  If 𝐸 ⊆ 𝐾 is an infinite set, and 𝐾 ⊆ ℝ𝑁  is compact, then 𝐸 has a
cluster point in 𝐾 .

Proof :  Looking for a contradiction, suppose 𝐸 has no cluster points in 𝐾 . Since 𝐸 ⊆ 𝐾 ,
by Assignment 1, question 4, we get

𝐸′ ⊆ 𝐾′ ⊆ 𝐾

because 𝐾 is closed. Then we must have 𝐸′ = ⌀. Then 𝐸 is closed since 𝐸′ = ⌀ ⊆ 𝐸.
It follows that 𝐸 is compact by theorem Proposition 1.26. Now if 𝑝 ∈ 𝐸, then 𝑝 ∉ 𝐸′

and we get 𝜀𝑝 > 0 such that

𝐵𝜀𝑝
(𝑝) ∩ 𝐸 = {𝑝}.

Then the open cover {𝐵𝜀𝑝
(𝑝) | 𝑝 ∈ 𝐸} of 𝐸 admits no finite subcover because 𝐸 is

infinite. □

Heine-Borel theorem

We wish to prove the converse of Theorem 1.28, that is if 𝐾 ⊆ ℝ𝑁  is closed and bounded,
then 𝐾 is compact.

Recall the nested interval principle in ℝ:

Theorem :  If 𝐼𝑛 = [𝑎𝑛, 𝑏𝑛] ⊆ ℝ is a nexted sequence of closed and bounded intervals in
ℝ, then

⋂
∞

𝑛=1
𝐼𝑛 ≠ ⌀.

Moreover if lim𝑛→∞(𝑏𝑛 − 𝑎𝑛) = 0 then ⋂∞
𝑛=1 𝐼𝑛 = {𝑧} is a single point.

Note :  A nested sequence means 𝐼𝑛 ⊇ 𝐼𝑛+1 for all 𝑛.

Definition :  For each 𝑗 = 1, …, 𝑁  let 𝑎𝑗𝑏𝑗 ∈ ℝ with 𝑎𝑗 < 𝑏𝑗. We call the Cartesian
product

𝐼 = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × ⋯ × [𝑎𝑁 , 𝑏𝑁 ]

and 𝑁 -cell.

Theorem 1.30 :  Let 𝐼1 ⊇ 𝐼2 ⊇ ⋯ be a decreasing sequence of 𝑁 -cells. Then ⋂∞
𝑛=1 ≠ ⌀.

Moreover, if lim𝑛→∞‖𝑏𝑛 − 𝑎𝑛‖ = 0 then ⋂∞
𝑛=1 𝐼𝑛 = {𝑧} where 𝑎𝑛, 𝑏𝑛 ∈ ℝ𝑁  are such

that

𝐼𝑛 = [𝑎𝑛,1, 𝑏𝑛,1] × ⋯ × [𝑎𝑛,𝑁 , 𝑏𝑛,𝑁].

Proof :  Since 𝐼𝑛 ⊇ 𝐼𝑛+1 we have [𝑎𝑛,𝑗, 𝑏𝑛,𝑗] ⊇ [𝑎𝑛+1,𝑗, 𝑏𝑛+1,𝑗]. By the nested interval
principle in ℝ, there exists

𝑧𝑗 ∈ ⋂
∞

𝑛=1
[𝑎𝑛,𝑗, 𝑏𝑛,𝑗], 𝑗 = 1, …, 𝑁.

We set 𝑧 = (𝑧1, …, 𝑧𝑁). Then

𝑧 ∈ ⋂
∞

𝑛=1
𝐼𝑛.

If lim𝑛→∞‖𝑏𝑛 − 𝑎𝑛‖ = 0, then since (𝑏𝑛,𝑗 − 𝑎𝑛,𝑗) ≤ ‖𝑏𝑛 − 𝑎𝑛‖ we deduce that
lim𝑛→∞(𝑏𝑛,𝑗 − 𝑎𝑛,𝑗) = 0. Hence

⋂
∞

𝑛=1
[𝑎𝑛,𝑗, 𝑏𝑛,𝑗] = {𝑧𝑗}.

Then

⋂
∞

𝑛=1
𝐼𝑛 = {𝑧}.

□

Theorem 1.31 :  Let 𝐼 = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × ⋯ × [𝑎𝑁 , 𝑏𝑁 ] be an 𝑁 -cell. Then 𝐼  is
compact.

Proof :  Let 𝑎 = (𝑎1, 𝑎2, …, 𝑎𝑛), 𝑏 = (𝑏1, 𝑏2, …, 𝑏𝑛). Set

𝛿 ≔ ‖𝑏 − 𝑎‖ =
⎷
√√
√

∑
𝑁

𝑗=1
(𝑏𝑗 − 𝑎𝑗)

2.

Notice that if 𝑥, 𝑦 ∈ 𝐼  then ‖𝑥 − 𝑦‖ < 𝛿. Looking for a contradiction, suppose 𝐼  is not
compact. Then there exists an open cover 𝑔 = {𝑔𝛼}𝛼∈Λ for 𝐼  that admits no finite
subcover.

Step 1: For each 𝑗 = 1, …, 𝑁  let 𝑐𝑗 = 𝑎𝑗+𝑏𝑗
2 . Then the intervals [𝑎𝑗, 𝑐𝑗], [𝑐𝑗, 𝑏𝑗] for 𝑗 =

1, …, 𝑁  give rise to 2𝑁  𝑁 -cells,

𝐽1 = {𝐼1,𝑙 | 𝑙 = 1, …, 2𝑁}

such that 𝐼 = ⋃2𝑁

𝑙=1 𝐼1,𝑙 where each 𝑁 -cell 𝐼1,𝑙 is the Cartesian product

[𝑑1, 𝑒1] × ⋯ × [𝑑𝑁 , 𝑒𝑁 ]

with [𝑑𝑗, 𝑒𝑗] ∈ {[𝑎𝑗, 𝑐𝑗], [𝑐𝑗, 𝑏𝑗]}. It follows that there is some 𝑙 ∈ {1, …, 2𝑁} such
that the 𝑁 -cell 𝐼1,𝑙 cannot be covered by a finite subcollection of sets from 𝑔. Let 𝐼1 be
such an 𝑁 -cell. Notice that:
1. 𝐼 ⊇ 𝐼1
2. 𝐼1 cannot be covered by a finite collection of sets from 𝑔
3. Let 𝑎1 = (𝑎1,1, 𝑎1,2, …, 𝑎1,𝑛), 𝑏1 = (𝑏1,1, 𝑏1,2, …, 𝑏1,𝑛) be such that

𝐼1 = [𝑎1,1, 𝑏1,1] × ⋯ × [𝑎1,𝑛, 𝑏1,𝑛],

then if 𝑥, 𝑦 ∈ 𝐼1,

‖𝑥 − 𝑦‖ ≤ ‖𝑏1 − 𝑎1‖ =
⎷
√√
√

∑
𝑁

𝑗=1
(𝑏1,𝑗 − 𝑎1,𝑗)

2 =
𝛿
2
.

Step 2: Induction. Suppose 𝑛 ≥ 1 is fixed and

𝐼 ⊇ 𝐼1 ⊇ ⋯ ⊇ 𝐼𝑛

are 𝑁 -cells, each 𝐼𝑙 cannot be covered by a finite collection of sets from 𝑔, and if 𝑥, 𝑦 ∈
𝐼𝑙, we have ‖𝑥 − 𝑦‖ < 𝛿

2𝑙 . Repeat the argument in Step 1 to get an 𝑁 -cell 𝐼𝑛+1 ⊆ 𝐼𝑛
that cannot be covered by a finite collection of sets from 𝑔 and 𝑥, 𝑦 ∈ 𝐼𝑛+1 means ‖𝑥 −
𝑦‖ ≤ 𝛿

2𝑛+1 .

We have proved the existence of a sequence if 𝐼, 𝐼1, 𝐼2, … of 𝑁 -cells with the following
properties:
1. 𝐼 ⊇ 𝐼1 ⊇ × ⋯ × 𝐼𝑛 ⊇ ⋯
2. Each 𝐼𝑛 cannot be covered by a finite collection of sets from 𝑔
3. If 𝑥, 𝑦 ∈ 𝐼𝑛 then ‖𝑥 − 𝑦‖ < 𝛿

2𝑛 .

By Theorem 1.30 we can find 𝑧 ∈ ⋂∞
𝑛=1 𝐼𝑛. Since

𝑧 ∈ 𝐼 ⊆ ⋃
𝛼∈Λ

𝑔𝛼,

there exists some 𝛽 ∈ Λ such that 𝑧 ∈ 𝑔𝛽. Because 𝑔𝛽 is open, there exists 𝜀 > 0 such
that 𝐵𝜀(𝑧) ⊆ 𝑔𝛽. Let 𝑛 be such that 𝛿

2𝑛 < 𝜀. We know that 𝑧 ∈ 𝐼𝑛, and if 𝑦 ∈ 𝐼𝑛 we
have by 3. that ‖𝑦 − 𝑧‖ ≤ 𝛿

2𝑛 < 𝜀, giving that 𝑦 ∈ 𝐵𝜀(𝑧). This shows that 𝐼𝑛 ⊆
𝐵𝜀(𝑧) ⊆ 𝑔𝛽, which is a contradiction by 2. because 𝐼𝑛 can be covered by the singleton
{𝑔𝛽} ⊆ 𝑔. 𝐼  must be compact. □

Theorem 1.32 (Heine-Borel) :  Let 𝐾 ⊆ ℝ𝑁 . Then the following are equivalent:
1. 𝐾 is compact,
2. 𝐾 is closed and bounded.

Proof :  The implication 1. ⟹ 2. is by Theorem 1.28. Suppose 𝐾 is closed and bounded.
Since 𝐾 is bounded, there exists 𝑀 > 0 such that 𝐾 ⊆ 𝐵𝑀 [0]. Then if 𝑥 ∈ 𝐾 , we have

|𝑥𝑗| ≤ ‖𝑥‖ ≤ 𝑀,

and so 𝐾 is contained in the 𝑁 -cell

𝐼𝑀 = [−𝑀, 𝑀] × ⋯ × [−𝑀, 𝑀].

By Theorem 1.31, 𝐼𝑀  is compact. Since 𝐾 ⊆ 𝐼𝑀  and 𝐾 is closed, then 𝐾 is compact by
Proposition 1.26. □

Connected Sets

May 22  Intuitively a set 𝑆 ⊆ ℝ𝑁  is connected if any two points 𝑥, 𝑦 ∈ 𝑆 can be connected by a
continuous path that is completely contained in 𝑆.

A connected set A disconnected set

We define connected sets using topology.

Definition 1.33 :  Let 𝑆 ⊆ ℝ𝑁  be a set. We say that a pair of open sets {𝑈, 𝑉 } in ℝ𝑁  is
a disconnection for 𝑆 if:
a) 𝑆 ⊆ 𝑈 ∪ 𝑉
b) 𝑆 ∩ 𝑈 ≠ ⌀ and 𝑆 ∩ 𝑉 ≠ ⌀
c) 𝑆 ∩ 𝑈 ∩ 𝑉 = ⌀.

If a disconnection for 𝑆 exists, we say that 𝑆 is disconnected. Otherwise we say that 𝑆 is
connected.

Figure 5: 𝑈, 𝑉  is a disconnection for 𝑆

Example 1.34 :
1. ℤ is not connected. Set 𝑈 = (−∞, 1

2), 𝑉 = (1
2 , ∞). Then 𝑈, 𝑉  are open, and

a) ℤ ⊆ 𝑈 ∪ 𝑉
b) ℤ ∩ 𝑈 = {…, −1, 0} ≠ ⌀ and ℤ ∩ 𝑉 = {1, 2, …} ≠ ⌀
c) ℤ ∩ 𝑈 ∩ 𝑉 = ⌀.

2. ℚ is not connected. Set 𝑈 = (−∞,
√

2), 𝑉 = (
√

2, ∞). Then 𝑈, 𝑉  is a
disconnection for ℚ.

May 25

Theorem 1.35 :  The interval [0, 1] is connected.

Proof :  Looking for a contradiction, suppose {𝑈, 𝑉 } is a disconnection for [0, 1]. We
may assume without loss of generality that 0 ∈ 𝑈  . Since 𝑈  is open, there exists 𝜀0 > 0
such that (−𝜀0, 𝜀0) ⊆ 𝑈 . We can assume 𝜀0 < 1. Then [0, 𝜀0) ⊆ 𝑈 . It follows that {0 <
𝜀 < 1 | [0, 𝜀) ⊆ 𝑈} is non-empty. We let

𝑡0 ≔ sup{0 < 𝜀 < 1 | [0, 𝜀) ⊆ 𝑈}.

Notice 𝑡0 ≤ 1.

Claim 1: [0, 𝑡0) ⊆ 𝑈 . Indeed, for 𝑛 ≥ 1, let 𝑟𝑛 > 0 with 𝑡0 − 1
𝑛 < 𝑟𝑛 < 𝑡0 such that

[0, 𝑟𝑛) ⊆ 𝑈 . We have

[0, 𝑡0) = ⋃
∞

𝑛=1
[0, 𝑟𝑛) ⊆ 𝑈

as needed.

Claim 2: 𝑡0 ∉ 𝑈 . Looking for a contradiction, suppose 𝑡0 ∈ 𝑈 . First, we observe that
𝑡0 ≠ 1, because if 𝑡0 = 1 ∈ 𝑈 , then

𝑈 ⊇ [0, 𝑡0) ∪ {𝑡0} = [0, 1) ∪ {1} = [0, 1].

This contradicts property c) of a disconnection as

𝑈 ∩ [0, 1] ∩ 𝑉 = ⌀ and [0, 1] ∩ 𝑉 ≠ ⌀.

We conclude 𝑡0 ≠ 1, so 𝑡0 < 1. Then there exists 𝛿 > 0 such that (𝑡0 − 𝛿, 𝑡0 + 𝛿) ⊆ 𝑈
(because 𝑈  is open). We may assume 𝑡0 + 𝛿 < 1. But then we have

[0, 𝑡0 + 𝛿) = [0, 𝑡0) ∪ [𝑡0, 𝑡0 + 𝛿) ⊆ 𝑈,

contradicting the definition of 𝑡0 as the supremum of {0 < 𝜀 < 1 | [0, 𝜀) ⊆ 𝑈}. We
conclude that 𝑡0 ∉ 𝑈 .

We deduce that 𝑡0 ∈ 𝑉  because {𝑈, 𝑉 } is a disconnection for [0, 1]. Since 𝑉  is open, we
can find 𝛿𝑉 > 0 such that (𝑡0 − 𝛿𝑉 , 𝑡0 + 𝛿𝑉 ) ⊆ 𝑉 . But then take

0 < 𝑟 < 𝑡0, 𝑟 > 𝑡0 − 𝛿𝑉 .

Then 𝑟 ∈ [0, 1], 𝑟 ∈ 𝑈  by Claim 1 and 𝑟 ∈ 𝑉 , contradicting property c) of a
disconnection. □

Higher dimensional examples

Definition 1.36 :  We say that 𝐶 ⊆ ℝ𝑁  is convex if for all 𝑥, 𝑦 ∈ 𝐶 , we have

𝑡𝑥 + (1 − 𝑡)𝑦 ∈ 𝐶, ∀𝑡 ∈ [0, 1].

That is, 𝐶 contains the line segment between any two points in 𝐶 .

A convex set Not a convex set

Theorem 1.37 :  Any convex set 𝐶 ⊆ ℝ𝑁  is connected.

Proof :  Looking for a contradiction, suppose 𝐶 is not connected. Let {𝑈, 𝑉 } be a
disconnection for 𝐶 . Let 𝑥 ∈ 𝐶 ∩ 𝑈 , and 𝑦 ∈ 𝐶 ∩ 𝑉 . We define

𝑈0 ≔ {𝑡 ∈ ℝ | 𝑡𝑥 + (1 − 𝑡)𝑦 ∈ 𝑈},
𝑉0 ≔ {𝑡 ∈ ℝ | 𝑡𝑥 + (1 − 𝑡)𝑦 ∈ 𝑉 }.

We will show that {𝑈0, 𝑉0} is a disconnection for [0, 1].

Claim: 𝑈0 and 𝑉0 are open. Let 𝑡0 ∈ 𝑈0. Then

𝑥0 ≔ 𝑡0𝑥 + (1 − 𝑡0)𝑦 ∈ 𝑈.

Since 𝑈  is open, there exists 𝜀 > 0 such that 𝐵𝜀(𝑥0) ⊆ 𝑈 . For each 𝑡 ∈ ℝ we set

𝑧𝑡 = 𝑡𝑥 + (1 − 𝑡)𝑦.

Notice that

‖𝑧𝑡 − 𝑥0‖ = ‖𝑡𝑥 + (1 − 𝑡)𝑦 − (𝑡0𝑥 + (1 − 𝑡0)𝑦) ‖
≤ ‖(𝑡 − 𝑡0)𝑥‖ + ‖(𝑡0 − 𝑡)𝑦‖
= |𝑡 − 𝑡0| · ‖𝑥‖ + |𝑡 − 𝑡0| · ‖𝑦‖.

Let 𝛿 = 𝜀
‖𝑥‖ + ‖𝑦‖ > 0. Then if 𝑡 ∈ (𝑡0 − 𝛿, 𝑡0 + 𝛿) we get

‖𝑧𝑡 − 𝑥0‖ < 𝜀 ⟹ 𝑧𝑡 ∈ 𝐵𝜀(𝑥0) ⊆ 𝑈.

This shows that (𝑡0 − 𝛿, 𝑡0 + 𝛿) ⊆ 𝑈0, and hence 𝑈0 is open. A similar argument shows
that 𝑉0 is open.

Then {𝑈0, 𝑉0} is a disconnection for [0, 1] because:
a) [0, 1] ⊆ 𝑈0 ∪ 𝑉0. If 𝑡 ∈ [0, 1], then 𝑧𝑡 = 𝑡𝑥 + (1 − 𝑡) ∈ 𝐶 because 𝐶 is convex. Then

𝑧𝑡 ∈ 𝑈  or 𝑧𝑡 ∈ 𝑉  so that 𝑡 ∈ 𝑈0 ∪ 𝑉0.
b) [0, 1] ∩ 𝑈0 ≠ ⌀ because 1 ∈ 𝑈0 and [0, 1] ∩ 𝑉0 ≠ ⌀ because 0 ∈ 𝑉0.
c) [0, 1] ∩ 𝑈0 ∩ 𝑉0 ≠ ⌀. Indeed, if 𝑡 ∈ [0, 1] ∩ 𝑈0 ∩ 𝑉0, then 𝑧𝑡 ∈ 𝑈 ∩ 𝑉 , but also 𝑧𝑡 =

𝑡𝑥 + (1 − 𝑡)𝑦 ∈ 𝐶 because 𝐶 is convex. This cannot happen because {𝑈, 𝑉 } is a
disconnection for 𝐶 . Hence [0, 1] ∩ 𝑈0 ∩ 𝑉0 = ⌀.

Thus {𝑈0, 𝑉0} is a disconnection for [0, 1], contradicting Theorem 1.35. □

Corollary 1.38 :  The following subsets of ℝ𝑁  are connected:
• ℝ𝑁 ,
• open balls,
• line segments,
• subspaces.

Corollary 1.39 :  The only clopen sets in ℝ𝑁  are ℝ𝑁  and ⌀.

Proof :  exercise. □

Sequences and limits in ℝ𝑁

May 27

Definition :  A sequence in ℝ𝑁  is a function 𝑓 : ℕ → ℝ𝑁 .

Notation :  We write 𝑥𝑛 ≔ 𝑓(𝑛) and we write (𝑥𝑛), (𝑥𝑛)∞
𝑛=1 or (𝑥𝑛)𝑛∈ℕ for the

sequences.

Definition 1.40 :  We say that a sequence (𝑥𝑛) in ℝ𝑁  converges to 𝑎 ∈ ℝ𝑁  if for every
𝜀 > 0, there exists 𝑀 ∈ ℕ such that if 𝑛 ≥ 𝑀  then ‖𝑥𝑛 − 𝑎‖ < 𝜀, or equivalently 𝑥𝑛 ∈
𝐵𝜀(𝑎) for 𝑛 ≥ 𝑀 .

We call 𝑎 the limit of (𝑥𝑛) and say that (𝑥𝑛) is convergent.

Note :  Notice that (𝑥𝑛) converges to 𝑎 if and only if for every open set 𝑈 ⊆ ℝ𝑁 , 𝑎 ∈ 𝑈 ,
there exists 𝑀𝑈 ∈ ℕ such that 𝑥𝑛 ∈ 𝑈  for all 𝑛 ≥ 𝑀𝑈 .

Definition 1.41 :  Let (𝑥𝑛) be a sequence in ℝ𝑁 .
1. We say that (𝑥𝑛) is bounded if its set of terms {𝑥𝑛 | 𝑛 ∈ ℕ} is a bounded set. That is,

there exists 𝑅 > 0 such that 𝑥𝑛 ∈ 𝐵𝑅[0] for all 𝑛 ∈ ℕ.
2. We say (𝑥𝑛) is Cauchy if for every 𝜀 > 0 there exists 𝑀 ∈ ℕ such that

‖𝑥𝑛 − 𝑥𝑚‖ < 𝜀

for all 𝑚, 𝑛 ≥ 𝑀 .

Recall :  If (𝑥𝑛) is a sequence in ℝ, then (𝑥𝑛) is convergent ⟺ (𝑥𝑛) is Cauchy ⟹ (𝑥𝑛)
is bounded. We will prove similar statements in ℝ𝑁 .

Proposition 1.42 :  Let (𝑥𝑛) be a sequence in ℝ𝑁 . Then:
1. If (𝑥𝑛) is convergent, then (𝑥𝑛) is Cauchy.
2. If (𝑥𝑛) is Cauchy, then it is bounded.

Proof :
1. Suppose (𝑥𝑛) is convergent and let 𝑎 = lim𝑛→∞ 𝑥𝑛. Let 𝜀 > 0 and let 𝑀 ∈ ℕ such

that ‖𝑥𝑛 − 𝑎‖ < 𝜀
2  for all 𝑛 ≥ 𝑀 . Let 𝑚, 𝑛 ≥ 𝑀 . We have

‖𝑥𝑛 − 𝑥𝑚‖ = ‖𝑥𝑛 − 𝑎 + 𝑎 − 𝑥𝑚‖ ≤ ‖𝑥𝑛 − 𝑎‖ + ‖𝑎 − 𝑥𝑚‖ < 𝜀.

Thus (𝑥𝑛) is Cauchy.
2. Suppose (𝑥𝑛) is Cauchy. For 𝜀 = 1, let 𝑀 ∈ ℕ be such that ‖𝑥𝑛 − 𝑥𝑚‖ < 1 for all

𝑛, 𝑚 ≥ 𝑀 . Then

‖𝑥𝑛‖ = ‖𝑥𝑛 − 𝑥𝑀 + 𝑥𝑀‖ ≤ ‖𝑥𝑛 − 𝑥𝑀‖ + ‖𝑥𝑀‖.

Take 𝑅 ≔ max{‖𝑥1‖, ‖𝑥2‖, …, ‖𝑥𝑀−1‖, 1 + ‖𝑥𝑀‖}. Then ‖𝑥𝑛‖ ≤ 𝑅 for all 𝑛 ∈ ℕ,
thus (𝑥𝑛) is bounded.

□

Proposition 1.43 :  A sequence (𝑥𝑛) in ℝ𝑁  can have at most one limit.

Proof :  Suppose (𝑥𝑛) is convergent. Looking for a contradiction, suppose 𝑎, 𝑏 ∈ ℝ𝑁 ,
𝑎 ≠ 𝑏 and 𝑎 = lim𝑛→∞ 𝑥𝑛 = 𝑏. Since 𝑎 ≠ 𝑏, we have ‖𝑎 − 𝑏‖ > 0, and we set 𝜀 = ‖𝑎−𝑏‖

2 .
Then 𝐵𝜀(𝑎) ∩ 𝐵𝜀(𝑏) = ⌀. Let 𝑀𝑎 ∈ ℕ be such that 𝑥𝑛 ∈ 𝐵𝜀(𝑎) for all 𝑛 ≥ 𝑀𝑎, and
𝑀𝑏 ∈ ℕ be such that 𝑥𝑛 ∈ 𝐵𝜀(𝑏) for all 𝑛 ≥ 𝑀𝑏. Then for 𝑛 ≥ max{𝑀𝑎, 𝑀𝑏} we have
𝑥𝑛 ∈ 𝐵𝜀(𝑎) ∩ 𝐵𝜀(𝑏) = ⌀, a contradiction. □

Sequential characterization of compact sets

Proposition 1.44 :  Let 𝑆 ⊆ ℝ𝑁  and 𝑝 ∈ ℝ𝑁 . Then the following are equivalent:
1. 𝑝 ∈ 𝑆′,
2. there exists a sequence (𝑥𝑛) in 𝑆 with 𝑥𝑛 ≠ 𝑥𝑚 if 𝑛 ≠ 𝑚 such that (𝑥𝑛) converges

to 𝑝.

Proof :  See assignment 2. □

Definition :  A subsequence of a sequence (𝑥𝑛) in ℝ𝑁  is a sequence of the form
(𝑥𝑛𝑘

)
∞

𝑘=1
 with 𝑛1 < 𝑛2 < ⋯ < 𝑛𝑘 < ⋯.

Example :  Consider the sequence (𝑥𝑛) in ℝ3.

𝑥𝑛 ≔ ((−1)𝑛, cos(
𝜋𝑛
2

),
1
𝑛

)

is not convergent but it is bounded, (𝑥𝑛) has convergent subsequences. For example,
(𝑥𝑛𝑘

) with 𝑥𝑛𝑘
≔ 𝑥2𝑘+1 or also (𝑥𝑛𝑘

) with 𝑥𝑛𝑘
≔ 𝑥4𝑘.

Proposition 1.45 :  If (𝑥𝑛) converges to 𝑎 ∈ ℝ𝑁  then every subsequence of (𝑥𝑛) also
converges to 𝑎.

Proof :  Let 𝑎 ≔ lim𝑛→∞ 𝑥𝑛 and let (𝑥𝑛𝑘
) be a subsequence of (𝑥𝑛). Let 𝜀 > 0 and

𝑀 ∈ ℕ be such that ‖𝑥𝑛 − 𝑎‖ < 𝜀 for all 𝑛 ≥ 𝑀 . Let 𝑘0 ∈ ℕ be such that 𝑛𝑘0
≥ 𝑀 .

Then 𝑘 ≥ 𝑛𝑘0
⟹ 𝑛𝑘 ≥ 𝑛𝑘0

≥ 𝑀  and so ‖𝑥𝑛𝑘
− 𝑎‖ < 𝜀. Thus (𝑥𝑛𝑘

) converges to 𝑎. □

Theorem 1.46 :  Let 𝐾 ⊆ ℝ𝑁 . Then the following are equivalent:
1. 𝐾 is compact,
2. every sequence (𝑥𝑛) in 𝐾 has a subsequence that converges to a point in 𝐾 .

Proof :

1. ⟹ 2. Let (𝑥𝑛) be a sequence in 𝐾 . We consider two cases:

Case 1: 𝐸 ≔ {𝑥𝑛 | 𝑛 ∈ ℕ} is finite (that is, the set of terms of (𝑥𝑛) is finite, such as
in (−1)𝑛). Then there exists 𝑎 ∈ 𝐸 such that the set {𝑛 ∈ ℕ | 𝑥𝑛 = 𝑎} is infinite. We
build a subsequence (𝑥𝑛𝑘

) of (𝑥𝑛) converging to 𝑎 ∈ 𝐾 as follows. We set

𝐴1 ≔ {𝑛 ∈ ℕ | 𝑥𝑛 = 𝑎}.

Then 𝐴1 ≠ ⌀ and we set 𝑛1 ≔ min 𝐴1. We let

𝐴2 ≔ {𝑛 ∈ ℕ | 𝑛 > 𝑛1, 𝑥𝑛 = 𝑎}.

Then 𝐴2 ≠ ⌀ and we let 𝑛2 ≔ min 𝐴2. Proceeding with the argument inductively
we obtain 𝑛1 < 𝑛2 < ⋯ < 𝑛𝑘 < ⋯ such that 𝑥𝑛𝑘

= 𝑎 for all 𝑘, hence (𝑥𝑛𝑘
)

converges to 𝑎.

Case 2: 𝐸 ≔ {𝑥𝑛 | 𝑛 ∈ ℕ} is infinite. Then since 𝐾 is compact, by Theorem 1.29, 𝐸
has a cluster point 𝑎 ∈ 𝐾 . Then we build a subsequence (𝑥𝑛𝑘

) converging to 𝑎 as
follows. For 𝜀 ≔ 1, take 𝑥𝑛1

∈ 𝐵1(𝑎). For 𝜀 = 1
2  take 𝑛2 > 𝑛1 with 𝑥𝑛2

∈ 𝐵1
2
(𝑎). We

continue with this process inductively by taking 𝜀 = 1
𝑘 , 𝑛𝑘 > 𝑛𝑘−1 with 𝑥𝑛𝑘

∈
𝐵1

𝑘
(𝑎).

2. ⟹ 1. Looking for a contradiction, suppose 𝐾 is not compact. Then 𝐾 is either not
bounded, or not closed.

Case 1: not bounded. Then for each 𝑛 ∈ ℕ we can find 𝑥𝑛 ∈ 𝐾 with ‖𝑥𝑛‖ > 𝑛. The
sequence (𝑥𝑛) in 𝐾 has no bounded subsequence, and hence no convergent
subsequences as well. We conclude that 𝐾 must be bounded.

Case 2: not closed. By the characterization of closed sets via cluter points, there exists
𝑝 ∈ 𝐾′, 𝑝 ∉ 𝐾 . By A2Q4, there exists (𝑥𝑛) a sequence in 𝐾 converging to 𝑝. Then
every subsequence of (𝑥𝑛) also converges to 𝑝 ∉ 𝐾 by Proposition 1.45,
contradicting, contradicting 2. So 𝐾 must be closed.

□

Cauchy criterion and completeness of ℝ𝑁

Theorem 1.47 (Bolzano-Weierstrass in ℝ𝑁 ) :  Let (𝑥𝑛) be a bounded sequence in ℝ𝑁 .
Then (𝑥𝑛) has a convergent subsequence.

Proof :  Suppose (𝑥𝑛) is bounded, say (𝑥𝑛) ⊆ 𝐵𝑅[0]. Since 𝐵𝑅[0] is closed and bounded,
it is compact by Theorem 1.32. Hence (𝑥𝑛) has a convergent subsequence by
Theorem 1.46. □

Proof (alternate) :  Using B.W. in ℝ, since

𝑥𝑛 = (𝑥𝑛,1, 𝑥𝑛,2, …, 𝑥𝑛,𝑁).

For the first coordinate find a convergent subsequence (𝑥𝑛𝑘,1), and take (𝑥𝑛𝑘
). Using

this subsequence, at the second coordinate find a covergent subsequence of (𝑥𝑛𝑘,2), say
(𝑥𝑛𝑘𝑗,2) to get (𝑥𝑛𝑘𝑗

). Continue this argument for each coordinate. □

Note :  The above proof is called the “Diagonal argument”.

Theorem 1.48 (Completeness of ℝ𝑁 ) :  Every Cauchy sequence in ℝ𝑁  is convergent.

Proof :  We already know by Proposition 1.42 that every Cauchy sequence is bounded.
Let (𝑥𝑛) be a Cauchy sequence in ℝ𝑁 . It follows by Theorem 1.47 that (𝑥𝑛) has a
convergent subsequence (𝑥𝑛𝑘

). Let 𝑎 = lim𝑘→∞ 𝑥𝑛𝑘
. We will show that (𝑥𝑛)

converges to 𝑎. Let 𝜀 > 0 and let 𝑘0 ∈ ℕ be such that

‖𝑥𝑛𝑘
− 𝑎‖ <

𝜀
2

for all 𝑘 ≥ 𝑘0. Let 𝑀 ∈ ℕ be such that ‖𝑥𝑛 − 𝑥𝑚‖ < 𝜀
2  for all 𝑛, 𝑚 ≥ 𝑀 . Let 𝑛 ≥ 𝑀

and let 𝑘 be such that 𝑘 ≥ 𝑘0 and 𝑛𝑘 ≥ 𝑀  (e.g. 𝑘 ≥ max{𝑘0, 𝑀}). Then

‖𝑥𝑛 − 𝑎‖ = ‖𝑥𝑛 − 𝑥𝑛𝑘
+ 𝑥𝑛𝑘

− 𝑎‖ ≤ ‖𝑥𝑛 − 𝑥𝑛𝑘
‖ + ‖𝑥𝑛𝑘

− 𝑎‖ < 𝜀.

□

Limits of functions and continuity
Let ⌀ ≠ 𝐷 ⊆ ℝ𝑁 , and 𝑓 : 𝐷 → ℝ𝑀  be a function. Given 𝑥0 ∈ 𝐷′ we wish to study the
behaviour of 𝑓  around 𝑥0.

Definition 2.1 :  Let ⌀ ≠ 𝐷 ⊆ ℝ𝑁 , 𝑓 : 𝐷 → ℝ𝑀  a function and let 𝑥0 ∈ 𝐷′. We say
that 𝐿 ∈ ℝ𝑀  is the limit of 𝑓  as 𝑥 → 𝑥0, written

𝐿 = lim
𝑥→𝑥0

𝑓(𝑥)

if for every 𝜀 > 0, there exists 𝛿 > 0 such that if 𝑥 ∈ 𝐷 and 0 < ‖𝑥 − 𝑥0‖ < 𝛿 we have
‖𝑓(𝑥) − 𝐿‖ < 𝜀.

Theorem 2.2 :  Let ⌀ ≠ 𝐷 ⊆ ℝ𝑁 , 𝑓 : 𝐷 → ℝ𝑀  a function and 𝑥0 ∈ 𝐷′. Then the
following are equivalent:
1. 𝐿 = lim𝑥→𝑥0

𝑓(𝑥).
2. For every sequence (𝑥𝑛) in 𝐷 ∖ {𝑥0} converging to 𝑥0 the sequence (𝑓(𝑥𝑛))

converges to 𝐿.
3. For every open neighbourhood 𝑈  of 𝐿 there exists an open neighbourhood 𝑉  of 𝑥0

such that

(𝑉 ∩ 𝐷) ∖ {𝑥0} ⊂ 𝑓−1(𝑈) ≔ {𝑥 ∈ 𝐷 | 𝑓(𝑥) ∈ 𝑈}.

Terminology :  𝑈  is a neighbourhood of 𝑥0 if there exists 𝜀 > 0 such that 𝐵𝜀(𝑥0) ⊂ 𝑈 .

Proof :
1. ⟹ 2. Let (𝑥𝑛) be a sequence in 𝐷 ∖ {𝑥0} converging to 𝑥0. Let 𝜀 > 0 be given.

Then there exists 𝛿 > 0 such that if 𝑥 ∈ 𝐷 and 0 < ‖𝑥 − 𝑥0‖ < 𝛿, then ‖𝑓(𝑥) −
𝐿‖ < 𝜀. Let 𝑀 ∈ ℕ be such that 𝑥𝑛 ∈ 𝐵𝛿(𝑥0) for all 𝑛 ≥ 𝑀 . Then ‖𝑓(𝑥𝑛) − 𝐿‖ < 𝜀,
gives that (𝑓(𝑥𝑛)) converges to 𝐿.

2. ⟹ 1. Looking for a contradiction, suppose 1. does not hold. Then there exists 𝜀 > 0
such that for every 𝛿 > 0 we can find 𝑥𝛿 ∈ 𝐷 with 0 < ‖𝑥𝛿 − 𝑥0‖ < 𝛿 such that
‖𝑓(𝑥𝛿) − 𝐿‖ ≥ 𝜀. For 𝛿 = 1, we find 𝑥1 ∈ 𝐵1(𝑥0) ∖ {𝑥0}, 𝑥1 ∈ 𝐷 with ‖𝑓(𝑥1) −
𝐿‖ ≥ 𝜀. For 𝛿 = 1

𝑛  we find 𝑥𝑛 ∈ 𝐷, 𝑥𝑛 ∈ 𝐵 1
𝑛
(𝑥0) ∖ {𝑥0} with ‖𝑓(𝑥𝑛) − 𝐿‖ ≥ 𝜀. The

corresponding sequence (𝑥𝑛) ⊆ 𝐷 ∖ {𝑥0} converges to 𝑥0, but (𝑓(𝑥𝑛)) does not
converge to 𝐿, contradicting 2.

1. ⟹ 3. Suppose 1. holds and let 𝑈  be an open neighbourhood of 𝐿. Let 𝜀 > 0 such
that 𝐵𝜀(𝐿) ⊆ 𝑈 . By 1., there exists 𝛿 > 0 such that if 𝑥 ∈ 𝐷 and 0 < ‖𝑥 − 𝑥0‖ < 𝛿
then ‖𝑓(𝑥) − 𝐿‖ < 𝜀 ⟹ 𝑓(𝑥) ∈ 𝐵𝜀(𝐿). Set 𝑉 ≔ 𝐵𝛿(𝑥0). Then

(𝑉 ∩ 𝐷) ∖ {𝑥0} ⊂ 𝑓−1(𝐵𝜀(𝐿)) ⊂ 𝑓−1(𝑈)

as needed.
3. ⟹ 1. Let 𝜀 > 0. Set 𝑈 ≔ 𝐵𝜀(𝐿). By 3. we can find an open neighbourhood 𝑉  of 𝑥0

such that (𝑉 ∩ 𝐷) ∖ {𝑥0} ⊂ 𝑓−1(𝑈). Let 𝛿 > 0 be such that 𝐵𝛿(𝑥0) ⊂ 𝑉 . Then if
𝑥 ∈ 𝐵𝛿(𝑥0) ∩ 𝐷, 𝑥 ≠ 𝑥0 then

𝑥 ∈ (𝑉 ∩ 𝐷) ∖ {𝑥0} ⟹ 𝑥 ∈ 𝑓−1(𝑈).

Hence ‖𝑓(𝑥) − 𝐿‖ < 𝜀.

□
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Note :  If 𝐷 ⊂ ℝ, 𝑥 approaches 𝑥0 either from the left or from the right. In ℝ𝑁 , there are
many different ways 𝑥 can approach 𝑥0.

Example :

a) 𝐷 = ℝ2 ∖ {(0, 0)}, 𝑓 : 𝐷 → ℝ, 𝑓(𝑥, 𝑦) = 𝑥𝑦
𝑥2+𝑦2 , and 𝑥0 = (0, 0). Let (𝑥𝑛) in 𝐷 ∖

{𝑥0}, 𝑥𝑛 = ( 1
𝑛 , 1

𝑛). Then 𝑥𝑛 → (0, 0). We have 𝑓(𝑥𝑛) = 1
2  for all 𝑛 so that

lim𝑛→∞ 𝑓(𝑥𝑛) = 1
2 .

Take (𝑥𝑛) in 𝐷 ∖ {𝑥0}, 𝑥𝑛 = ( 1
𝑛 , 1

𝑛2 ). We compute

lim
𝑛→∞

𝑓(𝑥𝑛) = lim
𝑛→∞

1
𝑛3

1
𝑛2 + 1

𝑛4

= lim
𝑛→∞

1
𝑛3

𝑛2+1
𝑛4

= lim
𝑛→∞

𝑛
𝑛2 + 1

= 0.

We conclude by sequential characterization that the limit does not exist.
b) Let 𝐷 = ℝ2 ∖ {(0, 0)}, 𝑓 : 𝐷 → ℝ, 𝑓(𝑥, 𝑦) = 𝑥4

𝑥2+𝑦2  and 𝑥0 = (0, 0). We claim that

lim
(𝑥,𝑦)→(0,0)

𝑓(𝑥, 𝑦) = 0.

Assume 𝑥 ≠ 0. Then 𝑓(𝑥, 𝑦) = 𝑥2

1+𝑦2

𝑥2

. We have 1 + 𝑦2

𝑥2 ≥ 1 and hence 1
1+𝑦2

𝑥2

≤ 1

giving that

0 ≤ 𝑓(𝑥, 𝑦) =
𝑥2

1 + 𝑦2

𝑥2

≤ 𝑥2.

Thus given 𝜀 > 0 let 𝛿 =
√

𝜀. Then if ‖(𝑥, 𝑦)‖ < 𝛿 we have 𝑥2 < 𝜀 and so 𝑓(𝑥, 𝑦) ≤
𝑥2 < 𝜀 proving that lim(𝑥,𝑦)→(0,0) = 0.

Continuity

Definition 2.3 :  Let 𝐷 ⊆ ℝ𝑁 , 𝑓 : 𝐷 → ℝ𝑀  be a function.
1. We say that 𝑓  is continuous at 𝑥0 ∈ 𝐷 if for every 𝜀 > 0 there exists 𝛿 > 0 such that

if 𝑥 ∈ 𝐷 and ‖𝑥 − 𝑥0‖ < 𝛿 we have ‖𝑓(𝑥) − 𝑓(𝑥0)‖ < 𝜀.
2. We say that 𝑓  is continuous on 𝐷 if 𝑓  is continuous at every point 𝑥0 ∈ 𝐷.

Remark :
1. Continuity only makes sense at a point 𝑥0 ∈ 𝐷.
2. We say that a point 𝑥0 ∈ 𝐷 is isolated if there exists 𝛿 > 0 such that 𝐵𝛿(𝑥0) ∩ 𝐷 =

{𝑥0} (e.g. 𝑥0 ∈ 𝐷 ∖ 𝐷′). If 𝑥0 ∈ 𝐷 is an isolated point, then every function 𝑓 : 𝐷 →
ℝ𝑀  is continuous at 𝑥0.

Theorem 2.4 :  Let 𝑓 : 𝐷 → ℝ𝑀  be a function and 𝑥0 ∈ 𝐷 ∩ 𝐷′. Then 𝑓  is continuous
at 𝑥0 if and only if lim𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0).

Properties of continuous functions

Proposition 2.5 :  Let 𝐷 ⊆ ℝ𝑁  and let 𝑓, 𝑔 : 𝐷 → ℝ𝑀 , Φ : 𝐷 → ℝ. Suppose that
𝑓, 𝑔, Φ are continuous at 𝑥0 ∈ 𝐷. Then:

𝑓 + 𝑔 : 𝐷 → ℝ𝑀 , 𝑥 ↦ 𝑓(𝑥) + 𝑔(𝑥)
𝑓 · 𝑔 : 𝐷 → ℝ, 𝑥 ↦ 𝑓(𝑥) · 𝑔(𝑥) (dot product)

Φ𝑓 : 𝐷 → ℝ𝑀 , 𝑥 ↦ Φ(𝑥)𝑓(𝑥) (scalar multiplication)

(scalar multiplication) are continuous at 𝑥0.

Proof :  exercise. (Use, for example, 𝑓(𝑥𝑛) → 𝑓(𝑥0) if and only if 𝑓(𝑥𝑛)𝑗 → 𝑓(𝑥0)𝑗 for
𝑗 = 1, 2, …, 𝑀 .) □

Proposition 2.6 :  Let 𝑓1 : 𝐷1 → ℝ𝐾 , 𝐷1 ⊆ ℝ𝑁  and 𝑓2 : 𝐷2 → ℝ𝑀 , 𝐷2 ⊆ ℝ𝐾 .
Suppose 𝑓1(𝐷1) ⊆ 𝐷2. If 𝑓1 is continuous at 𝑥0 ∈ 𝐷1, and 𝑓2 is continuous at 𝑓(𝑥0)
then

𝑓2 ∘ 𝑓1 : 𝐷1 → ℝ𝑀

𝑥 ↦ (𝑓2 ∘ 𝑓1)(𝑥) = 𝑓2(𝑓1(𝑥))

is continuous at 𝑥0.

Proof :  Let (𝑥𝑛) be an arbitrary sequence in 𝐷 converging to 𝑥0. We need to show that

lim
𝑛→∞

(𝑓2 ∘ 𝑓1)(𝑥𝑛) = 𝑓2(𝑓1(𝑥0)).

Since 𝑓1 is continuous at 𝑥0, we have that (𝑓1(𝑥𝑛)) converges to 𝑓1(𝑥0). Because 𝑓2 is
continuous at 𝑓(𝑥0) and 𝑓1(𝑥𝑛) → 𝑓(𝑥0) we get

lim
𝑛→∞

𝑓2(𝑓1(𝑥𝑛)) = 𝑓2(𝑓1(𝑥0))

as needed. □
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Proposition 2.7 :  Let 𝑓 : 𝐷 → ℝ𝑀 , 𝐷 ⊆ ℝ𝑁  be a function. For each 𝑗 = 1, …, 𝑀  let
𝑓𝑗 : 𝐷 → 𝑅 be the 𝑗-th component of 𝑓 , so that

𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), …, 𝑓𝑀(𝑥))

for all 𝑥 ∈ 𝐷. Then 𝑓  is continuous at 𝑥0 ∈ 𝐷 if and only if 𝑓𝑗 is continuous at 𝑥0 for all
𝑗 = 1, …, 𝑀 .

Proof :  exercise. □

Example :
a) Fix 𝑗 ∈ {1, …, 𝑁}. Then the function 𝜋𝑗 : ℝ𝑁 → ℝ, (𝑥1, …, 𝑥𝑛) ↦ 𝑥𝑗 (projection

onto the 𝑗-th coordinate) is continuous. Thus every function

𝑓 : ℝ𝑁 → ℝ
𝑓(𝑥1, …, 𝑥𝑁) = 𝑥𝑛1

1 𝑥𝑛2
2 ⋯𝑥𝑛𝑁

𝑁 ,

where 𝑛𝑗 ≥ 0, 𝑗 = 1, …, 𝑁  is continuous.
b) The function 𝑓 : ℝ2 → ℝ, 𝑓(𝑥, 𝑦) = 𝑥𝑦2

𝑥2+𝑦4+𝜋  is continuous on ℝ2. Indeed, if 𝑓 =
𝑓1𝑓2, 𝑓1(𝑥, 𝑦) = 𝑥𝑦2 is continuous by a), and 𝑓2(𝑥, 𝑦) = 1

𝑥2+𝑦4+𝜋  is continuous. Let
𝑓2 = 𝑔2 ∘ 𝑔1, where

𝑔1(𝑥, 𝑦) = 𝑥2 + 𝑦4 + 𝜋 ⊆ ℝ ∖ {0},

𝑔2 : ℝ ∖ {0} → ℝ, 𝑡 ↦
1
𝑡
.

c) The function

𝑓 : ℝ2 → ℝ3

𝑓(𝑥, 𝑦) = (cos(
𝑥𝑦2

𝑥2 + 𝑦4 + 𝜋
), sin(

𝑥𝑦2

𝑥2 + 𝑦4 + 𝜋
), 𝑒𝑥+𝑦)

is continuous on ℝ2 since each compoenent 𝑓1, 𝑓2, 𝑓3 of 𝑓  is continuous on ℝ2.

Global properties of continuity

Theorem 2.8 :  Let ⌀ ≠ 𝐷 ⊆ ℝ𝑁 , 𝑓 : 𝐷 → ℝ𝑀  be a function. The following are
equivalent:
1. 𝑓  is continuous on 𝐷.
2. For every 𝑈 ⊆ ℝ𝑀  open, there exists 𝑉 ⊆ ℝ𝑁  open such that 𝑓−1(𝑈) = 𝑉 ∩ 𝐷.

(Inverse images of open sets are relatively open in 𝐷.)
3. For every 𝐹 ⊆ ℝ𝑀  closed, there exists 𝐺 ⊆ ℝ𝑁  closed such that 𝑓−1(𝐹) = 𝐺 ∩ 𝐷.

(Inveres images of closed sets are relatively closed in 𝐷.)

Proof :
1. ⟹ 2. Suppose 𝑓  is continuous on 𝐷 and let 𝑈 ⊆ ℝ𝑀 . We claim that for each 𝑥 ∈

𝑓−1(𝑈) there exists an open neighbourhood 𝑉𝑥 of 𝑥 such that 𝑉𝑥 ∩ 𝐷 ⊆ 𝑓−1(𝑈).
Indeed, in case 𝑥 ∈ 𝐷 is an isolated point, let 𝛿𝑥 > 0 be such that 𝐵𝛿𝑥

(𝑥) ∩ 𝐷 =
{𝑥}. Set 𝑉𝑥 ≔ 𝐵𝛿𝑥

(𝑥). If 𝑥 ∈ 𝐷 ∩ 𝐷′, then lim𝑦→𝑥 𝑓(𝑦) = 𝑓(𝑥). By Theorem 2.2 (1.
⟹ 3.), there exists an open neighbourhood 𝑉𝑥 of 𝑥 such that

(𝑉𝑥 ∩ 𝐷) ∖ {𝑥} ⊆ 𝑓−1(𝑈),

and hence 𝑉𝑥 ∩ 𝐷 ⊆ 𝑓−1(𝑈). Set 𝑉 ≔ ⋃𝑥∈𝑓−1(𝑈) 𝑉𝑥. Then 𝑉  is open in ℝ𝑁 , and

𝑓−1(𝑈) ⊆ ⋃
𝑥∈𝑓−1(𝑈)

𝑉𝑥 ∩ 𝐷 = 𝑉 ∩ 𝐷 ⊆ 𝑓−1(𝑈)

giving that 𝑓−1(𝑈) = 𝑉 ∩ 𝐷 as needed.
2. ⟹ 1. Let 𝑥0 ∈ 𝐷 ∩ 𝐷′. We will apply Theorem 2.2 (3. ⟹ 1.). Let 𝑈  be an open

neighbourhood of 𝑓(𝑥). By 2. there exists 𝑉 ⊆ ℝ𝑁  open such that 𝑉 ∩ 𝐷 = 𝑓−1(𝑈)
and (𝑉 ∩ 𝐷) ∖ {𝑥} ⊆ 𝑓−1(𝑈). By Theorem 2.2 (3. ⟹ 1.), lim𝑦→𝑥 𝑓(𝑦) = 𝑓(𝑥), and
𝑓  is continuous at 𝑥.

2. ⟹ 3. Suppose 𝐹 ⊆ ℝ𝑀  is closed. Then 𝐹 𝑐 is open. By 2, there exists 𝑉 ⊆ ℝ𝑁  open
such that

𝑓−1(𝐹 𝑐) = 𝑉 ∩ 𝐷.

Now we use that 𝑓−1(𝐹 𝑐) = 𝑓−1(𝐹)𝑐 ∩ 𝐷. Hence

𝑓−1(𝐹)𝑐 ∩ 𝐷 = 𝑉 ∩ 𝐷.

Taking complements then the intersection with 𝐷 yields 𝑓−1(𝐹) = 𝑉 𝑐 ∩ 𝐷. Setting
𝐺 = 𝑉 𝑐 gives 3.

3. ⟹ 2. Follows by a similar argument as above.

□

Example 2.9 :  Prove that the set 𝐹 ⊆ ℝ4,

𝐹 = {(𝑥, 𝑦, 𝑧, 𝑤) | 𝑒𝑥+𝑦 sin(𝑧𝑤2) ∈ [0, 2], 𝑥2 − 𝑤2 + 𝑧3 − 𝑦4 ∈ [0, 2024]}

is closed.

Proof :  Let 𝑓 : ℝ4 → ℝ2,

𝑓(𝑥, 𝑦, 𝑧, 𝑤) = (𝑒𝑥+𝑦 sin(𝑧𝑤3), 𝑥2 − 𝑤2 + 𝑧3 − 𝑦4).

Then 𝑓  is continuous on ℝ4. We have 𝐹 = 𝑓−1(𝐹 ′) where

𝐹 ′ = [0, 2] × [0, 2024].

It follows from Theorem 2.8 (1. ⟹ 3.) that 𝐹  is closed. □

Continuity and compactness

Theorem 2.10 :  Let ⌀ ≠ 𝐾 ⊆ ℝ𝑁  be compact and 𝑓 : 𝐾 → ℝ𝑀  be continuous on 𝐾 .
Then 𝑓(𝐾) is compact.

Proof :  Let 𝑈 = {𝑈𝛼}𝛼∈Λ be an open cover of 𝑓(𝐾). By Theorem 2.8, for each 𝛼 ∈ Λ,
there exists 𝑉𝛼 ⊆ ℝ𝑁  open such that 𝑉𝛼 ∩ 𝐾 = 𝑓−1(𝑈𝛼). Set 𝑉 = {𝑉𝛼}𝛼∈Λ. Then

𝐾 = 𝑓−1(𝑓(𝐾))

= 𝑓−1( ⋃
𝛼∈Λ

𝑈𝛼)

= ⋃
𝛼∈Λ

𝑓−1(𝑈𝛼)

= ⋃
𝛼∈Λ

𝑉𝛼 ∩ 𝐾

⊆ ⋃
𝛼∈Λ

𝑉𝛼.

Hence 𝑉 = {𝑉𝛼}𝛼∈Λ is an open cover of 𝐾 . By compactness, 𝑉  admits a finite
subcover, 𝑉 ′ = {𝑉𝛼𝑖

| 𝑖 = 1, …, 𝑙}. Then

𝑓(𝐾) = 𝑓(⋃
𝑙

𝑖=1
𝑉𝛼𝑖

∩ 𝐾)

= ⋃
𝑙

𝑖=1
𝑓(𝑉𝛼𝑖

∩ 𝐾)

= ⋃
𝑙

𝑖=1
𝑈𝛼𝑖

∩ 𝑓(𝐾)

⊆ ⋃
𝑙

𝑖=1
𝑈𝛼𝑖

.

Hence 𝑈 ′ = {𝑈𝛼𝑖
| 𝑖 = 1, …, 𝑙} is a finite subcover for 𝑓(𝐾). □

Corollary 2.11 :  If ⌀ ≠ 𝐾 ⊆ ℝ𝑁  is compact, 𝑓 : 𝐾 → ℝ𝑀  is continuous, then 𝑓(𝐾) is
closed and bounded.
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Theorem 2.12 (Extreme value theorem) :  Suppose ⌀ ≠ 𝐾 ⊆ ℝ𝑁  is compact and 𝑓 :
𝐾 → ℝ is continuous. Then there are 𝑥min, 𝑥max ∈ 𝐾 such that

𝑓(𝑥min) = inf
𝑥∈𝐾

𝑓(𝑥) and 𝑓(𝑥max) = sup
𝑥∈𝐾

𝑓(𝑥).

Proof :  By Theorem 2.10, 𝑓(𝐾) is closed and bounded. In particular, inf 𝑓(𝐾) =
inf𝑥∈𝐾 𝑓(𝑥) and sup 𝑓(𝐾) = sup𝑥∈𝐾 𝑓(𝑥) exist. Since 𝑓(𝐾) is closed, we must have
inf𝑥∈𝐾 𝑓(𝑥) ∈ 𝑓(𝐾) and sup𝑥∈𝐾 𝑓(𝑥) ∈ 𝑓(𝐾). Hence we can find 𝑥min, 𝑥max ∈ 𝐾 with
𝑓(𝑥min) = inf 𝑓(𝐾) and 𝑓(𝑥max) = sup 𝑓(𝐾). □

Uniform continuity

Recall :  𝑓 : 𝐷 → ℝ𝑀  is continuous at 𝑥0 ∈ 𝐷 if given 𝜀 > 0 there exists 𝛿 > 0 such that
if 𝑥 ∈ 𝐷, ‖𝑥 − 𝑥0‖ < 𝛿 then ‖𝑓(𝑥) − 𝑓(𝑥0)‖ < 𝜀. Note that 𝛿 > 0 depends on both 𝜀 >
0 and 𝑥0.

Definition 2.13 :  Let 𝑓 : 𝐷 → ℝ𝑀 , 𝐷 ⊆ ℝ𝑁  be a function. We say that 𝑓  is uniformly
continuous on 𝐷 if given 𝜀 > 0 there exists 𝛿 > 0 such that if 𝑥, 𝑦 ∈ 𝐷 and ‖𝑥 − 𝑦‖ < 𝛿
then ‖𝑓(𝑥) − 𝑓(𝑦)‖ < 𝜀.

Example :

a) Let 𝐷 = [−𝑏, 𝑏] ⊆ ℝ be a closed and bounded interval, and let 𝑓 : 𝐷 → ℝ, 𝑓(𝑥) =
𝑥2. Then 𝑓  is uniformly continuous on 𝐷. (In fact, 𝐷 just has to be bounded.)

Proof :  Let 𝜀 > 0, for 𝑥, 𝑦 ∈ 𝐷 we have

|𝑓(𝑥) − 𝑓(𝑦)| = |𝑥2 + 𝑦2| = |𝑥 + 𝑦| |𝑥 − 𝑦| ≤ 2𝑏 |𝑥 − 𝑦|.

Take 𝛿 = 𝜀
2𝑏, then if |𝑥 − 𝑦| < 𝛿, we have

|𝑓(𝑥) − 𝑓(𝑦)| < 𝜀.

□

b) Let 𝑓 : (0, 1] → ℝ, 𝑓(𝑥) = 1
𝑥 . Then 𝑓  is not uniformly continuous on (0, 1]. Indeed,

take 𝜀 = 1, given 𝛿 > 0. Let 𝑛 ∈ ℕ such that 1
𝑛 < 𝛿

2 . Set 𝑥𝛿 = 1
𝑛 , 𝑦𝛿 = 1

𝑛+1 . Then

|𝑥𝛿 − 𝑦𝛿| <
1
𝑛

+
1

𝑛 + 1
< 𝛿

and |𝑓(𝑥𝛿) − 𝑓(𝑦𝛿)| = 1.

c) The function 𝑥 ↦ sin( 1
𝑥), 𝑥 > 0 is not uniformly continuous on (0, ∞) because

lim𝑥→0 sin( 1
𝑥) does not exist (see A2Q9).

Theorem 2.14 :  Let ⌀ ≠ 𝐾 ⊆ ℝ𝑁  be compact and 𝑓 : 𝐾 → ℝ𝑀  be continuous. Then 𝑓
is uniformly continuous on 𝐾 .

Proof :  Looking for a contradiction, suppose 𝑓  is not uniformly continuous on 𝐾 . Then
there exists 𝜀 > 0 such that for each 𝛿𝑛 ≔ 1

𝑛  we can find 𝑥𝑛, 𝑦𝑛 ∈ 𝐾 with ‖𝑥𝑛 −
𝑦𝑛‖ < 1

𝑛  and ‖𝑓(𝑥𝑛) − 𝑓(𝑦𝑛)‖ ≥ 𝜀. Since 𝐾 is compact, (𝑥𝑛) has a subsequence (𝑥𝑛𝑘
)

converging to a point 𝑥 ∈ 𝐾 . Note that

lim
𝑘→∞

𝑦𝑛𝑘
= lim

𝑘→∞
(𝑦𝑛𝑘

− 𝑥𝑛𝑘
+ 𝑥𝑛𝑘

) = lim
𝑘→∞

(𝑦𝑛𝑘
− 𝑥𝑛𝑘

) + 𝑥.

So lim𝑘→∞ 𝑦𝑛𝑘
= 𝑥. By continuity,

𝑓(𝑥) = lim
𝑘→∞

𝑓(𝑥𝑛𝑘
) = lim

𝑘→∞
𝑓(𝑦𝑛𝑘

).

But then lim𝑘→∞[𝑓(𝑥𝑛𝑘
) − 𝑓(𝑦𝑛𝑘

)] = 0, which is a contradiction because

‖𝑓(𝑥𝑛𝑘
) − 𝑓(𝑦𝑛𝑘

)‖ ≥ 𝜀

for all 𝑘. □

Continuity and connectedness

Recall the intermediate value theorem. If 𝑓 : [𝑎, 𝑏] → ℝ is continuous, and 𝑥1, 𝑥2 ∈ [𝑎, 𝑏] with
𝑓(𝑥1) < 𝑥 < 𝑓(𝑥2), then there exists 𝑑 ∈ [𝑎, 𝑏] with 𝑓(𝑑) = 𝑐. (That is, the range of 𝑓  is an
interval.)

Theorem 2.15 :  Let ⌀ ≠ 𝐷 ⊆ ℝ𝑁  be connected and 𝑓 : 𝐷 → ℝ𝑀  be continuous. Then
𝑓(𝐷) is connected.

Proof :  Looking for a contradiction, suppose {𝑈, 𝑉 } is a disconnection for 𝑓(𝐷). Since
𝑓  is continuous, by Theorem 2.8, there are open sets ̃𝑈 , ̃𝑉  in ℝ𝑁  such that

𝑓−1(𝑈) = 𝐷 ∩ ̃𝑈 and 𝑓−1(𝑉 ) = 𝐷 ∩ ̃𝑉 .

Then the pair { ̃𝑈, ̃𝑉 } gives a disconnection for 𝐷, a contradiction. □

Corollary 2.16 :  Let ⌀ ≠ 𝐷 ⊆ ℝ𝑁  be connected and 𝑓 : 𝐷 → ℝ be continuous. Then
𝑓(𝐷) is an interval. In particular, if 𝑥1, 𝑥2 ∈ 𝐷 and 𝑐 ∈ ℝ is such that 𝑓(𝑥1) < 𝑐 <
𝑓(𝑥2), there exists 𝑑 ∈ 𝐷 such that 𝑓(𝑑) = 𝑐.

Proof :  exercise. □

Differentiation in ℝ𝑁

We wish to introduce a notion of differentiability for functions 𝑓 : 𝐷 → ℝ𝑀 , 𝐷 ⊆ ℝ𝑁  open
extending the corresponding notion for real-valued functions in one variable.

Recall :  If 𝑓 : (𝑎, 𝑏) → ℝ and 𝑥0 ∈ (𝑎, 𝑏) then we say 𝑓  is differentiable at 𝑥0 if

lim
ℎ→0

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)
ℎ

exists, and the derivative at 𝑥0 is

𝑓 ′(𝑥0) = lim
ℎ→0

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)
ℎ

.

The derivative 𝑓 ′(𝑥0) gives us information such as:
• the minimum and maximum of the function,
• if the function is increasing or decreasing,
• and if 𝑓 ′(𝑥0) exists then 𝑓  is continuous at 𝑥0.

The geometric intuition for a derivative is:

Here, 𝑓 ′(𝑥0) is the slope of the line tangent to the graph of 𝑓  at (𝑥0, 𝑓(𝑥0)).

Note that:

𝑓 ′(𝑥0) = lim
ℎ→0

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)
ℎ

⇔ lim
ℎ→0

|
𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

ℎ
−

𝑓 ′(𝑥0)ℎ
ℎ

| = 0

⇔ lim
ℎ→0

|𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) − 𝑓 ′(𝑥0)ℎ|
|ℎ|

= 0.
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transformation 𝑇 : ℝ𝑁 → ℝ𝑀 . For 𝑓 : (𝑎, 𝑏) → ℝ, the increment 𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) is
approximated by ℎ ↦ 𝑓 ′(𝑥0)ℎ on ℝ.

Definition 3.1 :  Let ⌀ ≠ 𝐷 ⊆ ℝ𝑁  be open, 𝑓 : 𝐷 → ℝ𝑀  be a function. We say that 𝑓
is differentiable at 𝑥0 ∈ 𝐷 if there exists a linear transformation 𝑇 : ℝ𝑁 → ℝ𝑀  such
that

lim
ℎ→0

‖𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) − 𝑇ℎ‖
‖ℎ‖

= 0.

Note :
a) In the numerator we have a norm of a vector in ℝ𝑀 , and in the denominator we

have a norm of a vector in ℝ𝑁 .
b) The linear transformation 𝑇 : ℝ𝑁 → ℝ𝑀  is a nice approximation for 𝑓(𝑥0 + ℎ) −

𝑓(𝑥0):

𝑇0 = 0 = 𝑓(𝑥0 + 0) − 𝑓(𝑥0)

and not only

lim
ℎ→0

(𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) − 𝑇ℎ) = 0

but also

lim
ℎ→0

‖𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) − 𝑇ℎ‖
‖ℎ‖

= 0.

Theorem 3.2 (Uniqueness of the derivative) :  Let ⌀ ≠ 𝐷 ⊆ ℝ𝑁  be open, 𝑓 : 𝐷 → ℝ𝑀

be a function. Suppose 𝐴1, 𝐴2 : ℝ𝑁 → ℝ𝑀  are linear transformations such that

lim
ℎ→0

‖𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) − 𝐴𝑖ℎ‖
‖ℎ‖

= 0, 𝑖 = 1, 2.

Then 𝐴1 = 𝐴2.

Proof :  For ℎ with 𝑥0 + ℎ ∈ 𝐷 we have

‖𝐴1ℎ − 𝐴2ℎ‖ ≤ ‖𝐴1ℎ − [𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)]‖ + ‖𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) − 𝐴2ℎ‖.

Hence limℎ→0
‖𝐴1ℎ−𝐴2ℎ‖

‖ℎ‖ = 0.

Fix ℎ ∈ ℝ𝑁 , ℎ ≠ 0 and 𝑡 > 0, 𝑡 ∈ ℝ. By linearity,

‖𝐴1ℎ − 𝐴2ℎ‖
‖ℎ‖

=
‖𝐴1(𝑡ℎ) − 𝐴2(𝑡ℎ)‖

‖𝑡ℎ‖
.

Taking the limit as 𝑡 → 0 gives

‖𝐴1ℎ − 𝐴2ℎ‖
‖ℎ‖

= lim
𝑡→0

‖𝐴1(𝑡ℎ) − 𝐴2(𝑡ℎ)‖
‖𝑡ℎ‖

= 0.

Hence 𝐴1ℎ = 𝐴2ℎ as needed. □

Definition :  If 𝑓  is differentiable at 𝑥0 ∈ 𝐷, we call the (unique) linear transformation
𝑇 : ℝ𝑁 → ℝ𝑀  satisfying Definition 3.1 the differential of 𝑓  at 𝑥0, and we denote it
(𝐷𝑓)(𝑥0). Thus (𝐷𝑓)(𝑥0) : ℝ𝑁 → ℝ𝑀  is a linear transformation.

Note :  Further notation for the differential is (𝐷𝑓)𝑥0
 or 𝑓 ′(𝑥0).

We say that 𝑓  is differentiable in 𝐷 if 𝑓  is differentiable at every point 𝑥0 ∈ 𝐷.

We have 𝑓(𝑥0 + ℎ) = 𝑓(𝑥0) + (𝐷𝑓)(𝑥0)ℎ + 𝑟(ℎ) and limℎ→0
‖𝑟(ℎ)‖
‖ℎ‖ = 0.

Recall :  From linear algebra: let {𝑒1, 𝑒2, …, 𝑒𝑁} and {𝑢1, 𝑢2, …, 𝑢𝑀} be the standard
bases for ℝ𝑁  and ℝ𝑀  respectively, where

𝑒𝑖 = (0, …, 0, 1, 0, …, 0),

with 1 at the 𝑖-th coordinate.

A linear transformation 𝑇 : ℝ𝑁 → ℝ𝑀  is determined by a matrix 𝐴 ∈
𝕄𝑀×𝑁(ℝ), 𝐴 = (𝑎𝑖𝑗) where

𝐴 = [𝑇𝑒1 𝑇𝑒2 ⋯ 𝑇𝑒𝑁 ]

so that if we regard 𝑣 ∈ ℝ𝑁  as a column vector we have

𝑇𝑣 = 𝐴𝑣 = 𝐴

⎣
⎢
⎢
⎡

𝑣1
𝑣2
⋮

𝑣𝑁⎦
⎥
⎥
⎤

.

if 𝑇 : ℝ𝑁 → ℝ𝑀  and 𝑆 : ℝ𝑀 → ℝ𝐾 , 𝐴 ∈ 𝕄𝑀×𝑁(ℝ) represents 𝑇  and 𝐵 ∈
𝕄𝑀×𝐾(ℝ) represents 𝑆. Then 𝑆𝑇𝑣 = 𝐵𝐴𝑣 for all 𝑣 ∈ ℝ𝑁 . That is, the matrix 𝐵𝐴
represents the linear transformation 𝑆𝑇 : ℝ𝑁 → ℝ𝐾 .

Example :  Consider 𝑁 = 2, 𝑀 = 1 and let 𝐷 ⊆ ℝ2 open, 𝑓 : 𝐷 → ℝ. Suppose 𝑓  is
differentiable at 𝑥0 ∈ 𝐷. Then (𝐷𝑓)(𝑥0) is determined by [𝑎 𝑏] ∈ 𝕄1×2(ℝ) where
𝑎, 𝑏 ∈ ℝ.

𝑓(𝑥0 + (ℎ1, ℎ2)) ∼ 𝑓(𝑥0) + [𝑎 𝑏][
ℎ1
ℎ2

]

⟹ 𝑓(𝑥0 + (ℎ1, ℎ2)) ∼ 𝑓(𝑥0) + 𝑎ℎ1 + 𝑏ℎ2.

This is the equation of a plane in ℝ3. The graph of 𝑓  is a surface in ℝ3, near the point
(𝑥0, 𝑓(𝑥0)), 𝑓  is approximated by the “tangent” plane at (𝑥0, 𝑓(𝑥0)), given by 𝑓(𝑥0) +
𝑎ℎ1 + 𝑏ℎ2.
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Notation :  If 𝑇 : ℝ𝑁 → ℝ𝑀  is a linear transformation on a matrix, then

‖𝑇 ‖ ≔ sup{‖𝑇𝑣‖ | ‖𝑣‖ ≤ 1} < ∞

which satisfies the properties
1. ‖𝑇 ‖ = 0 ⇔ 𝑇 = 0
2. ‖𝛼𝑇 ‖ = |𝛼| · ‖𝑇 ‖, where 𝛼 ∈ ℝ
3. ‖𝑇 + 𝑆‖ ≤ ‖𝑇 ‖ + ‖𝑆‖.

It follows that for all ℎ ∈ ℝ𝑁 ,

‖𝑇ℎ‖ ≤ ‖𝑇 ‖ · ‖ℎ‖

because 𝑇  is linear and if ℎ ≠ 0, ℎ
‖ℎ‖  has norm 1, so

‖𝑇(
ℎ

‖ℎ‖
)‖ ≤ ‖𝑇 ‖ ⟹ ‖𝑇ℎ‖ ≤ ‖𝑇 ‖ · ‖ℎ‖.

Theorem 3.3 :  Let ⌀ ≠ 𝐷 ⊆ ℝ𝑁  be open, 𝑓 : 𝐷 → ℝ𝑀  be differentiable at 𝑥0 ∈ 𝐷.
Then 𝑓  is continuous at 𝑥0.

Proof :  Since 𝑓  is differentiable at 𝑥0, we have

lim
ℎ→0

‖𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) − (𝐷𝑓)(𝑥0)(ℎ)‖
‖ℎ‖

= 0.

Hence

lim
ℎ→0

‖𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) − (𝐷𝑓)(𝑥0)(ℎ)‖ = 0.

Thus

0 ≤ ‖𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)‖
≤ ‖𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) − (𝐷𝑓)(𝑥0)(ℎ)‖ + ‖(𝐷𝑓)(𝑥0)(ℎ)‖.

Taking the limit as ℎ → 0 and seeing that (𝐷𝑓)(𝑥0) is continuous yields that

lim
ℎ→0

‖𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)‖ ≤ 0

which gives 𝑓  is continuous at 𝑥0. □

Example :
a) What is the differential of a linear transformation 𝑇 : ℝ𝑁 → ℝ𝑀?

Suppose 𝑁 = 𝑀 = 1. Then 𝑇 (𝑥) = 𝛼𝑥 for some 𝛼 ∈ ℝ, for all 𝑥 ∈ ℝ. Then
𝑇 ′(𝑥) = 𝑇  as a linear transformation on ℝ for every 𝑥 ∈ ℝ. In general for 𝑇 :
ℝ𝑁 → ℝ𝑀  we have for all ℎ ∈ ℝ𝑁  and 𝑥0 ∈ ℝ𝑁 ,

𝑇 (𝑥0 + ℎ) − 𝑇(𝑥0) − 𝑇 (ℎ) = 0.

In particular, limℎ→0
‖𝑇(𝑥0+ℎ)−𝑇(𝑥0)−𝑇(ℎ)‖

‖ℎ‖ = 0 giving that (𝐷𝑇 )(𝑥0) = 𝑇 .
b) Let ⌀ ≠ 𝐷 ⊆ ℝ, 𝑓 : 𝐷 → ℝ𝑀  be a function and write

𝑓 = (𝑓1, 𝑓2, …, 𝑓𝑀)

where 𝑓𝑗 : 𝐷 → ℝ for all 𝑗 = 1, …, 𝑀 . A linear transformation 𝑇 : ℝ → ℝ𝑀  is
determined by the vector 𝑣 ≔ 𝑇(1). Then 𝑇  is the differential of 𝑓  at 𝑥0 ∈ 𝐷 if and
only if

lim
ℎ→0

‖𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) − ℎ𝑣‖
‖ℎ‖

= 0.

It follows that 𝑓  is differentiable at 𝑥0 if and only if each component is, in which
case

(𝐷𝑓)(𝑥0) =

⎣
⎢
⎢
⎢
⎡ 𝑓1′(𝑥0)

𝑓2′(𝑥0)
⋮

𝑓𝑀′(𝑥0)⎦
⎥
⎥
⎥
⎤

is determined by the derivatives at each component.

Theorem 3.4 (Chain rule) :  Suppose ⌀ ≠ 𝐷 ⊆ ℝ𝑁  is open, 𝑓 : 𝐷 → ℝ𝑀 , 𝑓(𝐷) ⊆
𝑉 , 𝑉 ⊆ ℝ𝑀  is open, 𝑔 : 𝑉 → ℝ𝐾 . If 𝑓  is differentiable at 𝑥0 ∈ 𝐷, 𝑔 is differentiable at
𝑓(𝑥0), then 𝑔 ∘ 𝑓  is differentiable at 𝑥0 and

𝐷(𝑔 ∘ 𝑓)(𝑥0) = (𝐷𝑔)(𝑓(𝑥0))(𝐷𝑓)(𝑥0). (1)

Note :  On the right hand side of (1) we have the product of linear transformations
ℝ𝑁 → ℝ𝑀  and ℝ𝑀 → ℝ𝐾 .

Proof :  Let us write 𝑦0 ≔ 𝑓(𝑥0), 𝐴 = (𝐷𝑓)(𝑥0) and 𝐵 = (𝐷𝑔)(𝑓(𝑥0)). We need to
show that

lim
ℎ→0

‖𝑔(𝑓(𝑥0 + ℎ)) − 𝑔(𝑓(𝑥0)) − 𝐵𝐴ℎ‖
‖ℎ‖

= 0.

We have for ℎ ∈ ℝ𝑁  such that 𝑓(𝑥0 + ℎ) is defined.

𝑔(𝑓(𝑥0 + ℎ)) − 𝑔(𝑓(𝑥0)) − 𝐵𝐴ℎ = 𝑔(𝑦0 + 𝑘) − 𝑔(𝑦0) − 𝐵𝐴ℎ

where 𝑘 = 𝑓(𝑥0 + ℎ) − 𝑓(𝑥0). Since 𝐵 = (𝐷𝑔)(𝑦0), given 𝜀 > 0 there exists 𝛿1 > 0
such that 𝑔(𝑦0 + 𝑘′) is defined and

‖𝑔(𝑦0 + 𝑘′) − 𝑔(𝑦0) − 𝐵𝑘′‖ < 𝜀 ‖𝑘′‖

whenever ‖𝑘′‖ < 𝛿1. Since 𝑓  is continuous at 𝑥0 by Theorem 3.3, we can find 𝛿2 > 0
such that if ℎ ∈ ℝ𝑁  and ‖ℎ‖ < 𝛿2, then 𝑓(𝑥0 + ℎ) is defined

‖𝑘‖ = ‖𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)‖ < 𝛿1.

Because 𝐴 = (𝐷𝑓)(𝑥0), we can find 𝛿3 > 0 such that 𝑓(𝑥0 + ℎ) is defined and ‖𝑘 −
𝐴ℎ‖ < 𝜀′ ‖ℎ‖ where 𝜀′ = min{ 𝜀

‖𝐵‖ , 𝜀} or simply 𝜀′ = 𝜀 is ‖𝐵‖ = 0. Take 𝛿 ≔
min{𝛿2, 𝛿3}. If ‖ℎ‖ < 𝛿1,

‖𝐵(𝑘 − 𝐴ℎ)‖ ≤ ‖𝐵‖ · ‖𝑘 − 𝐴ℎ‖ < 𝜀 ‖ℎ‖.

We also have

‖𝑘‖ ≤ ‖𝑘 − 𝐴ℎ‖ + ‖𝐴ℎ‖ < 𝜀 ‖ℎ‖ + ‖𝐴‖ · ‖ℎ‖ (2)

and ‖𝑘‖ < 𝛿1. So from (1) we have

‖𝑔(𝑦0 + 𝑘) − 𝑔(𝑦0) − 𝐵𝐴ℎ‖ ≤ ‖𝑔(𝑦0 + 𝑘) − 𝑔(𝑦0) − 𝐵𝑘‖ + ‖𝐵𝑘 − 𝐵𝐴ℎ‖
≤ 𝜀 ‖𝑘‖ + 𝜀 ‖ℎ‖.

Then

‖𝑔(𝑦0 + 𝑘) − 𝑔(𝑦0) − 𝐵𝑘‖ + ‖𝐵𝑘 − 𝐵𝐴ℎ‖
‖ℎ‖

<
𝜀 ‖𝑘‖
‖ℎ‖

+ 𝜀

<
𝜀(𝜀 ‖ℎ‖ + ‖𝐴‖ · ‖ℎ‖)

‖ℎ‖
+ 𝜀

= 𝜀2 + (1 + ‖𝐴‖)𝜀 (by (2)).

This shows that

lim
ℎ→0

‖𝑔(𝑦0 + 𝑘) − 𝑔(𝑦0) − 𝐵𝐴ℎ‖
‖ℎ‖

= 0

. □
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Partial derivatives

Recall that {𝑒1, …, 𝑒𝑁} and {𝑢1, …𝑢𝑀} denote the standard bases of ℝ𝑁  and ℝ𝑀

respectively, and for 𝑓 : 𝐷 → ℝ𝑀 , 𝑓 = (𝑓1, …, 𝑓𝑀) where 𝑓𝑗 : 𝐷 → ℝ is the 𝑗-th component
of 𝑓 .

Definition 3.5 :  For each 1 ≤ 𝑖 ≤ 𝑁  and 1 ≤ 𝑗 ≤ 𝑀 , we define for 𝑥0 ∈ 𝐷,

𝜕𝑓𝑗

𝜕𝑥𝑖
(𝑥0) = lim

𝑡→0

𝑓𝑗(𝑥0 + 𝑡𝑒𝑖) − 𝑓𝑗(𝑥0)
𝑡

.

Provided that the limit exists, 𝜕𝑓𝑗
𝜕𝑥𝑖

(𝑥0) is the derivative of 𝑓𝑗 at 𝑥0 in the 𝑥𝑖-direction.
𝜕𝑓𝑗
𝜕𝑥𝑖

(𝑥0) is called the partial derivative of 𝑓  at 𝑥0.

Futher notation: (𝐷𝑖𝑓𝑗)(𝑥0), if 𝑀 = 1 we have 𝜕𝑓
𝜕𝑥𝑖

(𝑥0) or (𝐷𝑖𝑓)(𝑥0).

It may happen that all the partial derivatives of 𝑓  at 𝑥0 exist, but 𝑓  is not continuous at 𝑥0.
But if 𝑓  is differentiable at 𝑥0, then its partial derivatives determine (𝐷𝑓)(𝑥0).

To interpret partial derivatives geometrically, suppose 𝑓 : 𝐷 → ℝ, 𝐷 ⊆ ℝ2 open.

𝜕𝑓
𝜕𝑦 (𝑥0) is the slope of the tangent line to the graph of 𝑓  at (𝑥0, 𝑦0, 𝑓(𝑥0, 𝑦0)) in the 𝑦-
direction.

How do we calculate a partial derivative? Treat the variables 𝑥1, …, 𝑥𝑖−1, 𝑥𝑖+1, …, 𝑥𝑁  as
constants.

Example :
a) Let 𝑓 : ℝ2 → ℝ, 𝑓(𝑥, 𝑦) = 𝑒𝑥 + 𝑥 cos(𝑥𝑦). Then:

𝜕𝑓
𝜕𝑦

(𝑥, 𝑦) = −𝑥2 sin(𝑥𝑦),

𝜕𝑓
𝜕𝑥

(𝑥, 𝑦) = 𝑒𝑥 + cos(𝑥𝑦) − 𝑥𝑦 sin(𝑥𝑦).

b) Let 𝑓 : ℝ2 → ℝ, 𝑓(𝑥, 𝑦) = {
𝑥𝑦

𝑥2+𝑦2 if (𝑥,𝑦)≠(0,0)

0 otherwise
. The partial derivatives of 𝑓  at (𝑥, 𝑦)

exist if (𝑥, 𝑦) ≠ (0, 0). If (𝑥, 𝑦) = (0, 0) we have

𝜕𝑓
𝜕𝑥

(0, 0) = lim
𝑡→0

𝑓(𝑡, 0) − 𝑓(0, 0)
𝑡

= 0,

𝜕𝑓
𝜕𝑦

(0, 0) = lim
𝑡→0

𝑓(0, 𝑡) − 𝑓(0, 0)
𝑡

= 0.

The partial derivatives of 𝑓  exist at exist at every point, but 𝑓  is not continuous at
(0, 0) because 𝑓( 1

𝑛 , 1
𝑛) = 1 for all 𝑛 ∈ ℕ.

The conclusion is that the partial derivaitves of 𝑓  existing do not imply 𝑓  is continuous.

Recall :  If 𝑇 : ℝ𝑁 → ℝ𝑀 , then the matrix of 𝑇  with respect to the standard bases is
given by

[𝑇 (𝑒1) 𝑇 (𝑒2) ⋯ 𝑇 (𝑒𝑁)] = (𝑎𝑗𝑖)𝑗,𝑖

where 𝑇 (𝑒𝑖) = ∑𝑀
𝑗=1 𝑎𝑗𝑖𝑢𝑗.

Theorem 3.6 :  Let ⌀ ≠ 𝐷 ⊆ ℝ𝑁  be open and 𝑓 : 𝐷 → ℝ𝑀  be differentiable at 𝑥0 ∈ 𝐷.
Then all the partial derivatives 𝜕𝑓𝑗

𝜕𝑥𝑖
(𝑥0) of 𝑓  exists, and

(𝐷𝑓)(𝑥0)(𝑒𝑖) = ∑
𝑀

𝑗=1

𝜕𝑓𝑗

𝜕𝑥𝑖
(𝑥0)𝑢𝑗.

As a consequence, the matrix (𝐷𝑓)(𝑥0) with respect to the standard bases is given by

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝜕𝑓1

𝜕𝑥1
(𝑥0)

𝜕𝑓2
𝜕𝑥1

(𝑥0)
⋮

𝜕𝑓𝑀
𝜕𝑥1

(𝑥0)

𝜕𝑓1
𝜕𝑥2

(𝑥0)
𝜕𝑓2
𝜕𝑥2

(𝑥0)
⋮

𝜕𝑓𝑀
𝜕𝑥2

(𝑥0)

⋯

⋯
⋱
⋯

𝜕𝑓1
𝜕𝑥𝑁

(𝑥0)
𝜕𝑓2
𝜕𝑥𝑁

(𝑥0)
⋮

𝜕𝑓𝑀
𝜕𝑥𝑁

(𝑥0)⎦
⎥
⎥
⎥
⎥
⎥
⎤

= (
𝜕𝑓𝑗

𝜕𝑥𝑖
(𝑥0))

𝑗,𝑖

.

Proof :  We know that

lim
𝑡→0

‖𝑓(𝑥0 + 𝑡𝑒𝑖) − 𝑓(𝑥0) − (𝐷𝑓)(𝑥0)(𝑡𝑒𝑖)‖
|𝑡|

= 0.

Using linearity of (𝐷𝑓)(𝑥0) the above yields

lim
𝑡→0

𝑓(𝑥0 + 𝑡𝑒𝑖) − 𝑓(𝑥0)
𝑡

= (𝐷𝑓)(𝑥0)(𝑒𝑖).

This implies that 𝜕𝑓𝑗
𝜕𝑥𝑖

(𝑥0) exists for all 𝑗 = 1, …, 𝑀  and

(𝐷𝑓)(𝑥0)(𝑒𝑖) = (
𝜕𝑓1
𝜕𝑥𝑖

(𝑥0),
𝜕𝑓2
𝜕𝑥𝑖

(𝑥0), …,
𝜕𝑓𝑀
𝜕𝑥𝑖

(𝑥0))

= ∑
𝑀

𝑗=1

𝜕𝑓𝑗

𝜕𝑥𝑖
(𝑥0)𝑢𝑗.

□

Note (Bryan) :  In the above step using linearity, by reverse triangle inequality,

0 ≤ lim
𝑡→0

|
‖𝑓(𝑥0 + 𝑡𝑒𝑖) − 𝑓(𝑥0)‖ − ‖(𝐷𝑓)(𝑡𝑒𝑖)‖

|𝑡|
|

≤ lim
𝑡→0

‖𝑓(𝑥0 + 𝑡𝑒𝑖) − 𝑓(𝑥0) − (𝐷𝑓)(𝑡𝑒𝑖)‖
|𝑡|

= 0.

It follows that

lim
𝑡→0

‖𝑓(𝑥0 + 𝑡𝑒𝑖) − 𝑓(𝑥0) − (𝐷𝑓)(𝑡𝑒𝑖)‖
|𝑡|

= 0

⟹ lim
𝑡→0

𝑓(𝑥0 + 𝑡𝑒𝑖) − 𝑓(𝑥0)
𝑡

= (𝐷𝑓)(𝑥0)(𝑒𝑖).

The matrix (𝜕𝑓𝑗
𝜕𝑥𝑖

(𝑥0))
𝑗,𝑖

 as in Theorem 3.6 is called the Jacobian matrix of 𝑓  at 𝑥0, and is

denoted by 𝐽𝑓(𝑥0).

Example 3.7 :  Let ⌀ ≠ 𝐷 ⊆ ℝ𝑁 , 𝛾 : (𝑎, 𝑏) → 𝐷 be differentiable in (𝑎, 𝑏). Let 𝑓 :
𝐷 → ℝ be differentiable in 𝐷. Combining the chain rule with Theorem 3.6 we obtain
that 𝑔 = 𝑓 ∘ 𝛾 is differentiable in (𝑎, 𝑏) and

𝑔′(𝑡) = (𝑓 ∘ 𝛾)′(𝑡)

= (
𝜕𝑓(𝛾(𝑡))

𝜕𝑥1
,
𝜕𝑓(𝛾(𝑡))

𝜕𝑥2
, …,

𝜕𝑓(𝛾(𝑡))
𝜕𝑥𝑁

)

⎣
⎢
⎢
⎢
⎡𝛾1′(𝑡)

𝛾2′(𝑡)
⋮

𝛾𝑁′(𝑡)⎦
⎥
⎥
⎥
⎤

= ∑
𝑁

𝑖=1

𝜕𝑓(𝛾(𝑡))
𝜕𝑥𝑖

𝛾𝑖′(𝑡)

= ∇𝑓(𝛾(𝑡)) · 𝛾′(𝑡) (scalar product).

Definition 3.8 (Gradient notation) :  Let 𝑓 : 𝐷 → ℝ, 𝐷 ⊆ ℝ𝑁  open be differentiable at
𝑥0 ∈ 𝐷. Then (𝐷𝑓)(𝑥0) is in 𝕄1×𝑁(ℝ),

(𝐷𝑓)(𝑥0) = (
𝜕𝑓
𝜕𝑥1

(𝑥0), …,
𝜕𝑓

𝜕𝑥𝑁
(𝑥0))

is called the gradient of 𝑓  at 𝑥0, and denoted by ∇𝑓(𝑥0). Notice that if 𝑓 : 𝐷 → ℝ𝑀

then

(𝐷𝑓)(𝑥0) =

⎣
⎢
⎢
⎢
⎡ ∇𝑓1(𝑥0)

∇𝑓2(𝑥0)
⋮

∇𝑓𝑀(𝑥0)⎦
⎥
⎥
⎥
⎤

.
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Definition 3.9 :  Let ⌀ ≠ 𝐷 ⊆ ℝ𝑁  be open, 𝑓 : 𝐷 → ℝ be a function, let 𝑥0 ∈ 𝐷 and
𝑣 ∈ ℝ𝑁  be a unit (i.e. ‖𝑣‖ = 1). The directional derivative of 𝑓  in the direction of 𝑣 is
given by

(𝐷𝑣𝑓)(𝑥0) = lim
𝑡→0

𝑓(𝑥0 + 𝑡𝑣) − 𝑓(𝑥0)
𝑡

provided the limit exists.

Note :  If 𝑣 = 𝑒𝑖 then (𝐷𝑒𝑖
𝑓)(𝑥0) = 𝜕𝑓

𝜕𝑥𝑖
(𝑥0).

Theorem 3.10 :  Let ⌀ ≠ 𝐷 ⊆ ℝ𝑁  be open and 𝑓 : 𝐷 → ℝ be differentiable at 𝑥0 ∈ 𝐷.
Then the directional derivative (𝐷𝑣𝑓)(𝑥0) of 𝑓  at 𝑥0 exists for every unit vector 𝑣 ∈
ℝ𝑁  and

(𝐷𝑣𝑓)(𝑥0) = ∇𝑓(𝑥0) · 𝑣.

Proof :  Consider the function 𝛾 : ℝ → ℝ𝑁 , 𝛾(𝑡) = 𝑥0 + 𝑡𝑣. Then 𝛾 is differentiable in ℝ
and 𝛾′(𝑡) = 𝑣 for all 𝑡 ∈ ℝ. We have 𝛾(0) = 𝑥0. Since 𝐷 is open, we can find 𝛿 > 0
such that 𝛾(𝑡) ∈ 𝐷 for all 𝑡 ∈ (−𝛿, 𝛿). Now

(𝐷𝑣𝑓)(𝑥0) = lim
𝑡→0

𝑓(𝑥0 + 𝑡𝑣) − 𝑓(𝑥0)
𝑡

= lim
𝑡→0

(𝑓 ∘ 𝛾)(𝑡) − (𝑓 ∘ 𝛾)(0)
𝑡

= (𝑓 ∘ 𝛾)′(0).

Example 3.7 yields

(𝑓 ∘ 𝛾)′(0) = ∇𝑓(𝛾(0)) · 𝛾′(0) = ∇𝑓(𝑥0) · 𝑣.

This shows that (𝐷𝑣𝑓)(𝑥0) exists and

(𝐷𝑣𝑓)(𝑥0) = ∇𝑓(𝑥0) · 𝑣.

□

This allows for a geometric interpretation of the gradient vector. By Cauchy-Schwarz,

‖(𝐷𝑣𝑓)(𝑥0)‖ ≤ ‖∇𝑓(𝑥0)‖ · ‖𝑣‖ = ‖∇𝑓(𝑥0)‖.

If 𝑣 = ∇𝑓(𝑥0)
‖∇𝑓(𝑥0)‖  then ‖𝑣‖ = 1 and ‖(𝐷𝑣𝑓)(𝑥0)‖ = ‖∇𝑓(𝑥0)‖.

So the gradient of 𝑓  at 𝑥0 points in the direction to which the slope of the tangent line to the
graph of 𝑓  at (𝑥0, 𝑓(𝑥0)) is maximal.

Example :  The existence of directional derivatives does not imply continuity. Consider
𝑓 : ℝ2 → ℝ, 𝑓(𝑥, 𝑦) = {1 if 0<𝑦<𝑥2

0 else
.

We have (𝐷𝑣𝑓)(0, 0) = 0 for all unit vectors 𝑣, but 𝑓  is not continuous at (0, 0).

Recall :

Theorem (Mean value theorem) :  Suppose 𝑓 : [𝑎, 𝑏] → ℝ is continuous on [𝑎, 𝑏]
and differentiable in (𝑎, 𝑏). Then there exists 𝑐 ∈ (𝑎, 𝑏) such that

𝑓 ′(𝑐) =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
.

Exercise :  (See A3.) Show 𝑓 : 𝐷 ⊆ ℝ𝑁 → ℝ𝑀  is differentiable at 𝑥0 ∈ 𝐷 if and only if
the 𝑗-th component of 𝑓, 𝑓𝑗 : 𝐷 → ℝ is differentiable at 𝑥0 for all 𝑗 = 1, …, 𝑀 .

Theorem 3.11 (Sufficient condition for differentiability) :  Let ⌀ ≠ 𝐷 ⊆ ℝ𝑁  be open, 𝑓 :
𝐷 → ℝ𝑀  and 𝑥0 ∈ 𝐷. Suppose that all partial derivatives 𝜕𝑓𝑗

𝜕𝑥𝑖
 exist in 𝐷 and are

continuous at 𝑥0. Then 𝑓  is differentiable at 𝑥0.

Proof :  We can assume 𝑀 = 1. We know that 𝑓  is differentiable at 𝑥0 if and only if

lim
ℎ→0

‖𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) − ∇𝑓(𝑥0) · ℎ‖
‖ℎ‖

= 0.

Let 𝜀 > 0 be given. Since each 𝜕𝑓
𝜕𝑥𝑖

 is continuous at 𝑥0, there exists 𝛿 > 0 such that if
‖𝑧 − 𝑥0‖ < 𝛿, then 𝑥 ∈ 𝐷 and

|
𝜕𝑓
𝜕𝑥𝑖

(𝑧) −
𝜕𝑓
𝜕𝑥𝑖

(𝑥0)| <
𝜀
𝑁

, 𝑖 = 1, …, 𝑁.

Fix ℎ ∈ ℝ𝑁  with ‖ℎ‖ < 𝛿, write ℎ = (ℎ1, …, ℎ𝑁). For each 𝑘 = 1, …, 𝑁  we set

𝑣𝑘 = ∑
𝑘

𝑖=1
ℎ𝑖𝑒𝑖 = (ℎ1, …, ℎ𝑘, 0, …, 0) ∈ ℝ𝑁 .

We set 𝑣0 = 0. Then 𝑣𝑘 = 𝑣𝑘−1 + ℎ𝑘𝑒𝑘 for 𝑘 = 1, …, 𝑁  and ‖𝑣𝑘‖ < 𝛿 for all 𝑘 =
0, …, 𝑁 . Now

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) = ∑
𝑁

𝑘=1
𝑓(𝑥0 + 𝑣𝑘) − 𝑓(𝑥0 + 𝑣𝑘−1).

Fix 𝑘 ≥ 1. We have 𝑥0 + 𝑣𝑘, 𝑥0 + 𝑣𝑘−1 ∈ 𝐵𝛿(𝑥0). Since 𝐵𝛿(𝑥0) is convex, it follows
that

𝑡(𝑥0 + 𝑣𝑘) + (1 − 𝑡)(𝑥0 + 𝑣𝑘−1) ∈ 𝐵𝛿(𝑥0), ∀𝑡 ∈ [0, 1].

So for all 𝑡 ∈ [0, 1], 𝑥0 + 𝑣𝑘−1 + 𝑡ℎ𝑘𝑒𝑘 ∈ 𝐵𝛿(𝑥0). Hence the function 𝑡 ↦ 𝑓(𝑥0 +
𝑣𝑘−1 + 𝑡ℎ𝑘𝑒𝑘) is continuous on [0, 1] and differentiable in (0, 1) because 𝜕𝑓

𝜕𝑥𝑘
 exists in

𝐷.

Set 𝑔𝑘 : [0, 1] → ℝ, 𝑔𝑘(𝑡) = 𝑓(𝑥0 + 𝑣𝑘−1 + 𝑡ℎ𝑘𝑒𝑘). We have 𝑔(1) = 𝑓(𝑥0 + 𝑣𝑘) and
𝑔(0) = 𝑓(𝑥0 + 𝑣𝑘−1). By MVT, there exists 𝑐𝑘 ∈ (0, 1) such that

ℎ𝑘
𝜕𝑓
𝜕𝑥𝑘

(𝑥0 + 𝑣𝑘−1 + 𝑐𝑘ℎ𝑘𝑒𝑘) = 𝑔𝑘′(𝑐𝑘) = 𝑓(𝑥0 + 𝑣𝑘) − 𝑓(𝑥0 + 𝑣𝑘−1).

Thus

𝑓(𝑥0 + 𝑣𝑘) − 𝑓(𝑥0 + 𝑣𝑘−1) −
𝜕𝑓
𝜕𝑥𝑘

(𝑥0)ℎ𝑘 = ℎ𝑘
𝜕𝑓
𝜕𝑥𝑘

(𝑥0 + 𝑣𝑘−1 + 𝑐𝑘ℎ𝑘𝑒𝑘) −
𝜕𝑓
𝜕𝑥𝑘

(𝑥0)ℎ𝑘

and

|ℎ𝑘
𝜕𝑓
𝜕𝑥𝑘

(𝑥0 + 𝑣𝑘−1 + 𝑐𝑘ℎ𝑘𝑒𝑘) −
𝜕𝑓
𝜕𝑥𝑘

(𝑥0)ℎ𝑘| < ℎ𝑘 ·
𝜀
𝑁

≤ ‖ℎ‖ ·
𝜀
𝑁

.

Now

|𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) − ∑𝑁
𝑘=1

𝜕𝑓
𝜕𝑥𝑘

(𝑥0)ℎ𝑘|

‖ℎ‖

=
|∑𝑁

𝑘=1 𝑓(𝑥0 + 𝑣𝑘) − 𝑓(𝑥0 + 𝑣𝑘−1) − 𝜕𝑓
𝜕𝑘(𝑥0)ℎ𝑘|

‖ℎ‖

< ∑
𝑁

𝑘=1

‖ℎ‖ · 𝜀
‖ℎ‖ · 𝑁

= 𝜀.

□

Example :  Let

𝑓 : ℝ2 → ℝ

𝑓 =
⎩{
⎨
{⎧(𝑥2 + 𝑦2) sin( 1√

𝑥2 ) if (𝑥, 𝑦) ≠ (0, 0)

0 otherwise
.

If (𝑥, 𝑦) ≠ 0 we have

𝜕𝑓
𝜕𝑥

(𝑥, 𝑦) = 2𝑥 sin(
1

√𝑥2 + 𝑦2
) −

𝑥
√𝑥2 + 𝑦2

cos(
1

√𝑥2 + 𝑦2
).

At (𝑥, 𝑦) = 0 we have

𝜕𝑓
𝜕𝑥

= lim
𝑡→0

𝑓(𝑡, 0) − 𝑓(0, 0)
𝑡

= lim
𝑡→0

𝑡 sin(
1
|𝑡|

)

= 0

by squeeze theorem. Thus 𝜕𝑓
𝜕𝑥  is continuous at every point (𝑥, 𝑦) ∈ ℝ2 ∖ {(0, 0)}. But

𝜕𝑓
𝜕𝑥  is not continuous at (0, 0) because for example

lim
𝑛→∞

𝜕𝑓
𝜕𝑥

(
1

2𝑛𝜋
, 0) = −1 ≠ 0 =

𝜕𝑓
𝜕𝑥

(0, 0).

Similarly, 𝜕𝑓
𝜕𝑦  exists in ℝ2 and is continuous on ℝ2 ∖ {(0, 0)} but it is not continuous at

(0, 0).

By Theorem 3.11, 𝑓  is differentiably at every point (𝑥, 𝑦) ≠ (0, 0). Note that 𝑓  is also
differentiable:

lim
(ℎ1,ℎ2)→(0,0)

|𝑓(ℎ1, ℎ2) − 𝑓(0, 0) − 0(ℎ1, ℎ2)|
‖(ℎ1, ℎ2)‖

= lim
(ℎ1,ℎ2)→(0,0)

‖(ℎ1, ℎ2)‖
2 sin( 1

‖(ℎ1,ℎ2)‖)

‖(ℎ1, ℎ2)‖
= 0.

Product rule and linearity

Proposition 3.12 :  Suppose ⌀ ≠ 𝐷 ⊆ ℝ𝑁  is open, 𝑓, 𝑔 : 𝐷 → ℝ𝑀  are differentiable at
𝑥0 ∈ 𝐷. Then 𝜆𝑓 + 𝑔 : 𝐷 → ℝ𝑀 , (𝜆𝑓 + 𝑔)(𝑥) = 𝜆𝑓(𝑥) + 𝑔(𝑥) is differentiable at 𝑥0
for all 𝜆 ∈ ℝ and

(𝐷(𝜆𝑓 + 𝑔))(𝑥0) = 𝜆(𝐷𝑓)(𝑥0) + (𝐷𝑔)(𝑥0).

Proof :  exercise. □

Proposition 3.13 (Product rule) :  Let ⌀ ≠ 𝐷 ⊆ ℝ𝑁  be open, 𝑓, 𝑔 : 𝐷 → ℝ𝑀  be
functions. If 𝑓  and 𝑔 are differentiable at 𝑥0 ∈ 𝐷, then

𝑓 · 𝑔 : 𝐷 → ℝ, 𝑥 ↦ 𝑓(𝑥) · 𝑔(𝑥) (dot product)

is differentiable at 𝑥0 and

𝐷(𝑓 · 𝑔)(𝑥0) = 𝑓(𝑥0)
𝑇 (𝐷𝑔)(𝑥0) + 𝑔(𝑥0)

𝑇 (𝐷𝑓)(𝑥0).

In case 𝑀 = 1, this gives

∇(𝑓 · 𝑔) = 𝑓 · ∇𝑔 + 𝑔 · ∇𝑓.

Or by abuse of notation, ∇(𝑓𝑔) = 𝑓∇𝑔 + 𝑔∇𝑓 .

Proof :  We write 𝑣 = 𝑓 · 𝑔 = ∑𝑀
𝑗=1 𝑓𝑗𝑔𝑗. If 𝑣 is differentiable at 𝑥0, then

(𝐷𝑣)(𝑥0) = (
𝜕𝑣
𝜕𝑥1

,
𝜕𝑣
𝜕𝑥2

, …,
𝜕𝑣

𝜕𝑥𝑁
)

with

𝜕𝑣
𝜕𝑥𝑖

=
𝜕

𝜕𝑥𝑖
(∑

𝑀

𝑗=1
𝑓𝑗𝑔𝑗) = ∑

𝑀

𝑗=1
(

𝜕𝑓𝑗

𝜕𝑥𝑖
· 𝑔𝑗 +

𝜕𝑔𝑗

𝜕𝑥𝑖
· 𝑓𝑗)

by the product rule for real valued functions. This is exactly the 𝑖-th column of (didn’t
catch what was said here). So it suffices to show 𝑣 is differentiable at 𝑥0.

𝑣(𝑥0 + ℎ) − 𝑣(𝑥0) − 𝑓(𝑥0)
𝑇 (𝐷𝑔)(𝑥0)ℎ − 𝑔(𝑥0)

𝑇 (𝐷𝑓)(𝑥0)ℎ
= (𝑓 · 𝑔)(𝑥0 + ℎ) − (𝑓 · 𝑔)(𝑥0) − 𝑓(𝑥0) · 𝑔(𝑥0 + ℎ) + 𝑓(𝑥0) · 𝑔(𝑥0 + ℎ)

−𝑔(𝑥0 + ℎ)𝑇 (𝐷𝑓)(𝑥0)ℎ + 𝑔(𝑥0 + ℎ)𝑇 (𝐷𝑓)(𝑥0)ℎ

−𝑔(𝑥0)
𝑇 (𝐷𝑓)(𝑥0)ℎ − 𝑓(𝑥0)

𝑇 (𝐷𝑔)(𝑥0)ℎ
= 𝑆1 + 𝑆2 + 𝑆3

where

𝑆1 = 𝑔(𝑥0 + ℎ) · (𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) − (𝐷𝑓)(𝑥0)ℎ),
𝑆2 = 𝑓(𝑥0) · (𝑔(𝑥0 + ℎ) − 𝑔(𝑥0) − (𝐷𝑔)(𝑥0)ℎ),
𝑆3 = (𝑔(𝑥0 + ℎ) − 𝑔(𝑥0)) · (𝐷𝑓)(𝑥0)ℎ.

Then by Cauchy-Schwarz,

|𝑆1|
‖ℎ‖

≤ ‖𝑔(𝑥0 + ℎ)‖ ·
‖𝑓(𝑥0 + ℎ) − 𝑓(𝑥0) − (𝐷𝑓)(𝑥0)ℎ‖

‖ℎ‖
,

|𝑆2|
‖ℎ‖

≤ ‖𝑓(𝑥0)‖ ·
‖𝑔(𝑥0 + ℎ) − 𝑔(𝑥0) − (𝐷𝑔)(𝑥0)ℎ‖

‖ℎ‖
,

|𝑆3|
‖ℎ‖

≤ ‖𝑔(𝑥0 + ℎ) − 𝑔(𝑥0)‖ ·
‖(𝐷𝑓)(𝑥0)ℎ‖

‖ℎ‖
≤ ‖𝑔(𝑥0 + ℎ) − 𝑔(𝑥0)‖ · ‖(𝐷𝑓)(𝑥0)ℎ‖.

Since 𝑔 is continuous at 0, each summation goes to 0 as ℎ → 0. □
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Higher order partial derivatives

Definition 3.14 :  Suppose ⌀ ≠ 𝐷 ⊂ ℝ𝑁  and 𝑓 : 𝐷 → ℝ.

a) If 𝑖 ∈ {1, …, 𝑁} is such that 𝜕𝑓
𝜕𝑥𝑖

 exists in 𝐷, then 𝜕𝑓
𝜕𝑥𝑖

 is a function on 𝐷. If the
partial derivative of 𝜕𝑓

𝜕𝑥𝑖
 exists in 𝐷 we define for 𝑗 = 1, …, 𝑁

𝜕2𝑓
𝜕𝑥𝑗𝜕𝑥𝑖

=
𝜕

𝜕𝑥𝑗
(

𝜕𝑓
𝜕𝑥𝑖

).

This is called the second order partial derivative of 𝑓 .

Further notation: 𝐷𝑗𝑖𝑓  or 𝑓𝑥𝑖𝑥𝑗
 (notice the change of order).

b) We say that 𝑓 ∈ 𝐶0(𝐷) if 𝑓  is continuous on 𝐷, 𝑓 ∈ 𝐶1(𝐷) if 𝑓 ∈ 𝐶0(𝐷) and all
the partial derivatives of 𝑓  exist in 𝐷 and are continuous. If 𝑓 ∈ 𝐶1(𝐷) we say that
𝑓  is continuously differentiable.

We say 𝑓 ∈ 𝐶2(𝐷) if 𝑓 ∈ 𝐶1(𝐷) and all second order partial derivatives are in
𝐶0(𝐷).

Similarly, 𝑓 ∈ 𝐶𝑘(𝐷) if 𝑓 ∈ 𝐶𝑘−1(𝐷) and all 𝜕𝑘𝑓
𝜕𝑥𝑖𝑘

𝜕𝑥𝑖𝑘−1
⋯𝜕𝑥𝑖1

, partial derivatives of
order 𝑘, are in 𝐶0(𝐷).

Example :  Let 𝑓(𝑥, 𝑦) = 𝑒𝑥𝑦

𝑥  for 𝑥 ≠ 0. Then

𝑓𝑥 = (
𝑦
𝑥

−
1
𝑥2 )𝑒𝑥𝑦,

𝑓𝑦 = 𝑒𝑥𝑦.

The second order partial derivatives are:

𝑓𝑥𝑥 = (𝑦𝑥 −
1
𝑥2 )𝑦𝑒𝑥𝑦 + (−

𝑦
𝑥2 +

2
𝑥3 )𝑒𝑥𝑦,

𝑓𝑥𝑦 = 𝑦𝑒𝑥𝑦,

𝑓𝑦𝑦 = 𝑥𝑒𝑥𝑦,

𝑓𝑦𝑥 = 𝑦𝑒𝑥𝑦.

Notice that 𝑓𝑥𝑦 = 𝑓𝑦𝑥.

Remark :  Let 𝐷 ⊆ ℝ𝑁  be open, 𝑁 ≥ 3. Suppose 𝑖, 𝑗 ∈ {1, …, 𝑁} are such that 𝑖 < 𝑗,
and

𝜕𝑓
𝜕𝑥𝑖

,
𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑖

exist at 𝑥0 = (𝑎1, …, 𝑎𝑁). We consider 𝑔 : 𝑈 ⊆ ℝ2 → ℝ for some open neighbourhood
𝑈  of (𝑎𝑖, 𝑎𝑗) defined by

𝑔(𝑥, 𝑦) = 𝑓(𝑎1, 𝑎2, …, 𝑎𝑖−1, 𝑥, 𝑎𝑖+1, …, 𝑎𝑗−1, 𝑦, 𝑎𝑗+1, …, 𝑎𝑁).

Then we have

𝜕𝑔
𝜕𝑥

(𝑥, 𝑦) =
𝜕𝑓
𝜕𝑥𝑖

(𝑎1, …, 𝑎𝑖−1, 𝑥, 𝑎𝑖+1, …, 𝑎𝑗−1, 𝑦, 𝑎𝑗+1, …, 𝑎𝑁).

This will allow us to assume 𝑁 = 2 in the next theorems.

Theorem 3.15 :  Let ⌀ ≠ 𝐷 ⊆ ℝ2 be open and 𝑓 : 𝐷 → ℝ. Suppose 𝜕𝑓
𝜕𝑥 , 𝜕2𝑓

𝜕𝑦𝜕𝑥  exist in 𝐷.
Let (𝑎, 𝑏) ∈ 𝐷 and 𝑄 be a closed rectangle contained in 𝐷 with oppositve vertices (𝑎, 𝑏)
and (𝑎 + ℎ, 𝑏 + 𝑘) where ℎ, 𝑘 ≠ 0. Then there exists an interior point of 𝑄, (𝑥, 𝑦) such
that

Δ(𝑓, 𝑄) = ℎ𝑘
𝜕2𝑓
𝜕𝑦𝜕𝑥

(𝑥, 𝑦)

where Δ(𝑓, 𝑄) = 𝑓(𝑎 + ℎ, 𝑏 + 𝑘) − 𝑓(𝑎 + ℎ, 𝑏) − 𝑓(𝑎, 𝑏 + 𝑘) + 𝑓(𝑎, 𝑏).

Proof :  Let 𝑣(𝑡) = 𝑓(𝑡, 𝑏 + 𝑘) − 𝑓(𝑡, 𝑏) for 𝑡 ∈ [𝑎, 𝑎 + ℎ] (or [𝑎 + ℎ, 𝑎]). Then 𝑣 is
differentiable on the open interval and continuous on the closed interval [𝑎, 𝑎 + ℎ] (or
[𝑎 + ℎ, 𝑎]). By MVT, we can find 𝑥 between 𝑎 and 𝑎 + ℎ such that

𝜕𝑓
𝜕𝑥

(𝑥, 𝑏 + 𝑘) −
𝜕𝑓
𝜕𝑥

(𝑥, 𝑏) = 𝑣′(𝑡)

=
𝑣(𝑎 + ℎ) − 𝑣(𝑎)

ℎ

=
Δ(𝑓, 𝑄)

ℎ
.

(3)

Now the function 𝑠 ↦ 𝜕𝑓
𝜕𝑥(𝑥, 𝑠) is continuous on the closed interval [𝑏, 𝑏 + 𝑘] (or [𝑏 +

𝑘, 𝑏]) and differentiable in the open interval because 𝜕2𝑓
𝜕𝑦𝜕𝑥  exists in 𝐷. By MVT, we can

find 𝑦 between 𝑏 and 𝑏 + 𝑘 such that

𝜕2𝑓
𝜕𝑦𝜕𝑥

(𝑥, 𝑦) =
𝜕𝑓
𝜕𝑥(𝑥, 𝑏 + 𝑘) − 𝜕𝑓

𝜕𝑥(𝑥, 𝑏)
𝑘

. (4)

Replacing (4) in (3) yields

𝜕2𝑓
𝜕𝑦𝜕𝑥

(𝑥, 𝑦) =
Δ(𝑓, 𝑄)

ℎ𝑘
.

□
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Theorem 3.16 :  Let ⌀ ≠ 𝐷 ⊂ ℝ2 be open, 𝑓 : 𝐷 → ℝ a function. Suppose that 𝜕𝑓
𝜕𝑥 , 𝜕𝑓

𝜕𝑦
and 𝜕2𝑓

𝜕𝑦𝜕𝑥  exist in 𝐷 and that 𝜕2𝑓
𝜕𝑦𝜕𝑥  is continuous at (𝑎, 𝑏) ∈ 𝐷. Then 𝜕2𝑓

𝜕𝑥𝜕𝑦  exists at (𝑎, 𝑏)
and 𝜕2𝑓

𝜕𝑥𝜕𝑦(𝑎, 𝑏) = 𝜕2𝑓
𝜕𝑦𝜕𝑥(𝑎, 𝑏).

Proof :  Set 𝐴 = 𝜕2𝑓
𝜕𝑦𝜕𝑥(𝑎, 𝑏). We wish to show that

lim
ℎ→0

(
𝑓𝑦(𝑎 + ℎ, 𝑏) − 𝑓𝑦(𝑎, 𝑏)

ℎ
− 𝐴) = 0.

Let 𝜀 > 0, let 𝛿′ > 0 be such that 𝐵𝛿′(𝑎, 𝑏) ⊂ 𝐷 and if (𝑥, 𝑦) ∈ 𝐵𝛿′(𝑎, 𝑏) then
|𝑓𝑥𝑦(𝑎, 𝑏) − 𝐴| < 𝜀.

Let 𝛿 > 0 such that [𝑎 − 𝛿, 𝑎 + 𝛿] × [𝑏 − 𝛿, 𝑏 + 𝛿] ⊂ 𝐵𝛿′(𝑎, 𝑏). Take ℎ, 𝑘 ≠ 0 with
|ℎ|, |𝑘| < 𝛿. Then the closed rectangle 𝑄 with opposite vertices [𝑎, 𝑏] and [𝑎 + ℎ, 𝑏 + 𝑘]
is contianed in 𝐵𝛿′(𝑎, 𝑏). By Theorem 3.15, there exists (𝑥, 𝑦) an interior point of 𝑄
such that Δ(𝑓, 𝑄) = ℎ𝑘 𝜕2𝑓

𝜕𝑦𝜕𝑥(𝑥, 𝑦). Then

|
Δ(𝑓, 𝑄)

ℎ𝑘
− 𝐴| < 𝜀.

Thus

|
𝑓(𝑎 + ℎ, 𝑏 + 𝑘) − 𝑓(𝑎 + ℎ, 𝑏) − 𝑓(𝑎, 𝑏 + 𝑘) + 𝑓(𝑎, 𝑏)

ℎ𝑘
− 𝐴| < 𝜀.

Taking the limit 𝑘 → 0 we get

|
𝑓𝑦(𝑎 + ℎ, 𝑏) − 𝑓𝑦(𝑎, 𝑏)

ℎ
− 𝐴| < 𝜀.

Since 0 ≠ ℎ ∈ ℝ, |ℎ| < 𝛿 was arbitrary, this shows that 𝑓𝑦𝑥(𝑎, 𝑏) exists and 𝑓𝑦𝑥(𝑎, 𝑏) =
𝑓𝑥,𝑦(𝑎, 𝑏). □

Corollary 3.17 (Clairaut's theorem) :  Let ⌀ ≠ 𝐷 ⊂ ℝ𝑁 , and 𝑓 : 𝐷 → ℝ in 𝐶2(𝐷).
Then 𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
= 𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑖
 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑁 .

Proof :  Follows from Theorem 3.16 and the Remark before Theorem 3.15. □

Vector fields

Definition 3.18 :  A vector field is simply a function 𝑣 : 𝐷 ⊂ ℝ𝑁 → ℝ𝑁 .

Example (important) :  Suppose 𝑓 : 𝐷 → ℝ is differentiable. Then ∇𝑓 : 𝐷 → ℝ𝑁 , 𝑥 ↦
( 𝜕𝑓

𝜕𝑥1
(𝑥), …, 𝜕𝑓

𝜕𝑥𝑁
(𝑥)) is a vector field called the gradient field.

Proposition :  Suppose that 𝑣 : 𝐷 → ℝ𝑁 , 𝐷 open is a vector field in 𝐶1(𝐷). Then a
necessary condition for 𝑣 to be a gradient field is that

𝜕𝑣𝑗

𝜕𝑥𝑖
=

𝜕𝑣𝑖
𝜕𝑥𝑗

, ∀1 ≤ 𝑖, 𝑗 ≤ 𝑁.

Proof :  Suppose 𝑣 = ∇𝑓 . Then 𝑓  must necessarily be of class 𝐶2. Then by Clairaut’s
theorem,

𝜕𝑣𝑗

𝜕𝑥𝑖
=

𝜕
𝜕𝑥𝑖

(
𝜕𝑓
𝜕𝑥𝑗

) =
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
=

𝜕2𝑓
𝜕𝑥𝑗𝜕𝑥𝑖

=
𝜕𝑣𝑖
𝜕𝑥𝑗

.

□

Other operations on a vector field

Suppose 𝑣 : 𝐷 → ℝ𝑁  is a differentiable vector field, the the divergence of 𝑣 is

div(𝑣) = ∑
𝑁

𝑖=1

𝜕𝑣𝑖
𝜕𝑥𝑖

= ∇ · 𝑣 = (
𝜕

𝜕𝑥1
,

𝜕
𝜕𝑥2

, …,
𝜕

𝜕𝑥𝑁
) · (𝑣1, 𝑣2, …, 𝑣𝑁).

If 𝑓 : 𝐷 → ℝ is of class 𝐶2, the Laplace operator is

Δ𝑓 ≔ div(grad 𝑓) = ∑
𝑁

𝑖=1

𝜕2𝑓
𝜕𝑥2

𝑖
.

The Laplace operator appears in many partial differential equations.
1. A function 𝑓 : 𝐷 → ℝ is said to be harmonic if Δ𝑓 = 0.
2. Let 𝐷 ⊂ ℝ𝑁 , 𝑓 : 𝐷 × (0, ∞) → ℝ, 𝑓(𝑥, 𝑡) for 𝑥 ∈ 𝐷, 𝑡 ∈ (0, ∞). The heat equation is

∇𝑓
∇𝑡 = 𝑘Δ𝑓 . The wave equation is ∇

2𝑓
∇𝑡2 = 𝑣Δ𝑓 .

Derivative as a linear approximation

Suppose 𝑁 = 1. Recall that 𝑓 ′(𝑥0) is the derivative of 𝑓  at 𝑥0, and

𝑓(𝑥) = 𝑓(𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) + 𝑅𝑥0
(ℎ)

for some error function 𝑅𝑥0
(ℎ), where ℎ = 𝑥 − 𝑥0 and limℎ→0

𝑅𝑥0(ℎ)
ℎ = 0.

If 𝑓 : 𝐷 → ℝ, 𝐷 ⊆ ℝ𝑁 , 𝑁 ≥ 2 and 𝑓  is differentiable at 𝑥0, then

𝑓(𝑥) = 𝑓(𝑥0) + (𝐷𝑓)(𝑥0)(𝑥 − 𝑥0) + 𝑅𝑥0
(ℎ)

where ℎ = 𝑥 − 𝑥0 and limℎ→0
‖𝑅𝑥0(ℎ)‖

‖ℎ‖ = 0. The function 𝐿 : ℝ𝑁 → ℝ,

𝐿(𝑥) = 𝑓(𝑥0) + (𝐷𝑓)(𝑥0)(𝑥 − 𝑥0)

is the linear approximation of 𝑓  at 𝑥0.

If 𝑁 = 2, then for (𝑥0, 𝑦0) ∈ 𝐷,

𝐿(𝑥) = 𝑓(𝑥0, 𝑦0) + ∇𝑓(𝑥0, 𝑦0) · (𝑥 − 𝑥0, 𝑦 − 𝑦0)
= 𝑓(𝑥0, 𝑦0) + 𝑓𝑥(𝑥0, 𝑦0)(𝑥 − 𝑥0) + 𝑓𝑦(𝑥0, 𝑦0)(𝑦 − 𝑦0)

is the tangent plane to the graph of 𝑓 .
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Taylor’s theorem

We wish to prove a version of Taylor’s theorem for functions of several variables. Recall the
version of Taylor’s theorem for one variable.

Theorem (Taylor's theorem, one variable case) :  Let 𝑛 ≥ 1 and let 𝑓 : (𝑎, 𝑏) → ℝ be 𝑛-
times differentiable in (𝑎, 𝑏). Let 𝑥0 ∈ (𝑎, 𝑏). Then for each 𝑥 ∈ (𝑎, 𝑏), 𝑥 ≠ 𝑥0 there
exists 𝜉 lying between 𝑥0 and 𝑥 such that

𝑓(𝑥) = ∑
𝑛−1

𝑘=0

𝑓 (𝑘)(𝑥0)
𝑘!

(𝑥 − 𝑥0)
𝑘 +

𝑓 (𝑛)(𝜉)
𝑛!

(𝑥 − 𝑥0)
𝑛.

Proof :  Let 𝑥 ≠ 𝑥0. The proof will follow by induction on 𝑛. For 𝑛 = 1, the statement is
the MVT. Suppose 𝑛 ≥ 2 and write

𝑃(𝑡) = ∑
𝑛−1

𝑘=0

𝑓 (𝑘)(𝑥0)
𝑘!

(𝑡 − 𝑥0)
𝑘

for 𝑡 ∈ ℝ. Set 𝑀 ≔ 𝑓(𝑥)−𝑃(𝑥)
(𝑥−𝑥0)𝑛  such that 𝑓(𝑥) = 𝑃(𝑥) + 𝑀(𝑥 − 𝑥0)

𝑛. We need to show
that 𝑀 = 𝑓(𝑛)(𝜉)

𝑛!  for some 𝜉 between 𝑥0 and 𝑥, or equivalently 𝑓 (𝑛)(𝜉) = 𝑛!𝑀 . Let
𝑔(𝑡) = 𝑓(𝑡) − 𝑃(𝑡) − 𝑀(𝑡 − 𝑥0)

𝑛 then 𝑔(𝑥0) = 0. Also, for 𝑘 = 1, …, 𝑛 − 1, 𝑔(𝑘) =
𝑓 (𝑘)(𝑥0) − 𝑃 (𝑘)(𝑥0) = 0 because 𝑃 (𝑘)(𝑥0) = 𝑓 (𝑘)(𝑥0) for 𝑘 = 1, …, 𝑛 − 1. Now
𝑔(𝑛)(𝑡) = 𝑓 (𝑛)(𝑡) − 𝑛!𝑀 . So we need to find 𝜉 between 𝑥0 an 𝑥 such that 𝑔(𝑛)(𝜉) = 0.

Since 𝑔(𝑥) = 0 by choice of 𝑀 , by MVT there exists 𝑥1 between 𝑥0 and 𝑥 such that
𝑔′(𝑥0) = 0. Since 𝑔′(𝑥0) = 0 and 𝑔′(𝑥1) = 0, again by MVT there exists 𝑥2 lying
between 𝑥0 and 𝑥1 (hence between 𝑥0 and 𝑥) such that 𝑔″(𝑥2) = 0. Continuiing with
this process, after 𝑛 − 1 steps we obtain a point 𝑥𝑛−1 between 𝑥0 and 𝑥 such that
𝑔(𝑛+1)(𝑥𝑛−1) = 0. We apply MVT again to get 𝑥𝑛 between 𝑥0 and 𝑥 such that
𝑔(𝑛)(𝑥𝑛) = 0. Setting 𝜉 ≔ 𝑥𝑛 we get

𝑓 (𝑛)(𝜉)
𝑛!

= 𝑀.

□

Corollary 3.19 (second derivative test) :  Let 𝑓 ∈ 𝐶2(𝑎, 𝑏). Let 𝑥0 ∈ (𝑎, 𝑏) such that
𝑓 ′(𝑥0) = 0. Then:
1. if 𝑓″(𝑥0) < 0, then 𝑥0 is a local maximum of 𝑓 ,
2. if 𝑓″(𝑥0) > 0, then 𝑥0 is a local minimum of 𝑓 .

Proof :

1. Since 𝑓″ is continuous, there exists 𝛿 > 0 such that (𝑥0 − 𝛿, 𝑥0 + 𝛿) ⊂ (𝑎, 𝑏) and
𝑓″(𝑥0) < 0 whenever |𝑥 − 𝑥0| < 𝛿. Now let 𝑥 with |𝑥 − 𝑥0| < 𝛿. By Taylor’s
theorem, there exists 𝜉 between 𝑥0 and 𝑥 such that

𝑓(𝑥) = 𝑓(𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0) +
𝑓″(𝜉)

2
(𝑥 − 𝑥0)

2

= 𝑓(𝑥0) +
𝑓″(𝜉)

2
(𝑥 − 𝑥0)

2.

Since 𝑓″(𝜉) < 0 we get 𝑓(𝑥) − 𝑓(𝑥0) < 0, so 𝑥0 is a local maximum.

3. Follows by a similar argument.

□

Multivariable Taylor’s theorem

Notation (multi-index) :  For 𝑁 ≥ 0 we let 𝛼 = (𝛼1, …, 𝛼𝑁) ∈ ℕ𝑁
0  (including 0). For

𝛼 ∈ ℕ𝑁
0 , we write

𝑥𝛼 = 𝑥𝛼1
1 𝑥𝛼2

2 ⋯𝑥𝛼𝑁
𝑁

for 𝑥 = (𝑥1, …, 𝑥𝑁) ∈ ℝ𝑁 , and

𝛼! = 𝛼1!𝛼2!⋯𝛼𝑁 ! and |𝛼| = 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑁 .

For 𝛼 ∈ ℕ𝑁
0  a multi-index, we write

𝐷𝛼𝑓 =
𝜕 |𝛼|𝑓

𝜕𝑥𝛼1
1 𝜕𝑥𝛼2

2 ⋯𝜕𝑥𝛼𝑁
𝑁

for 𝑓 ∈ 𝐶 |𝛼|, |𝛼| ≤ 𝑛.

Example :
a) 𝐷(1,2,1)𝑓 = 𝜕4𝑓

𝜕𝑥1𝜕𝑥2
2𝜕𝑥3

.
b) 𝛼 = (0, 1, 0), 𝐷𝛼𝑓 = 𝜕𝑓

𝜕𝑥2
.

Let (𝑖1, …, 𝑖𝑛) be an 𝑛-tuple in {1, …, 𝑁}𝑛. For each 𝑘 = 1, …, 𝑁  we let 𝛼𝑘 be the number of
times 𝑘 appears in (𝑖1, …, 𝑖𝑛). Then 𝛼 = (𝛼1, …, 𝛼𝑁) is a multi-index with 𝛼1 + 𝛼2 + ⋯ +
𝛼𝑁 = 𝑛. If 𝑓  is of class 𝐶(𝑛), it follows from Clairaut’s theorem that

𝜕𝑛𝑓
𝜕𝑥𝑖1

𝜕𝑥𝑖2
⋯𝜕𝑥𝑖𝑛

= 𝐷𝛼𝑓.

If 𝛼 = (𝛼1, …, 𝛼𝑁) is a multi-index with 𝛼1 + ⋯ + 𝛼𝑁 = 𝑛, there are exactly 𝑛!
𝛼!  𝑛-tuples

whose associated multi-index as above is 𝛼. This follows from the multi-monomial theorem:

(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑁)𝑛 = ∑
|𝛼|=𝑛

𝑛!
𝛼!

𝑥𝛼.
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Lemma 3.20 :  Let ⌀ ≠ 𝐷 ⊆ ℝ𝑁  be open, 𝑓 : 𝐷 → ℝ, 𝑓 ∈ 𝐶𝑛(𝐷). Let 𝑥0 ∈ 𝐷, 𝜉 ∈ ℝ𝑁

such that 𝑥0 + 𝑡𝜉 ∈ 𝐷 for all 𝑡 ∈ [0, 1]. Then there exists an open interval containing
[0, 1] such that 𝑔 : (𝑎, 𝑏) → ℝ, 𝑔(𝑡) = 𝑓(𝑥0 + 𝑡𝜉) is in 𝐶𝑛((𝑎, 𝑏)) and

𝑔(𝑛)(𝑡) = ∑
|𝛼|=𝑛

𝑛!
𝛼!

𝐷𝛼𝑓(𝑥0 + 𝑡𝜉) · 𝜉𝛼.

Proof :  The existence of (𝑎, 𝑏) ⊃ [0, 1] with 𝑥0 + 𝑡𝜉 ∈ 𝐷 follows because 𝐷 is open and
𝑥0 + 𝑡𝜉 ∈ 𝐷 for all 𝑡 ∈ [0, 1].

Let us first prove by induction on 𝑛 that

𝑔(𝑛)(𝑡) = ∑
𝑁

𝑖1,𝑖2,…,𝑖𝑛=1

𝜕𝑛𝑓(𝑥0 + 𝑡𝜉)
𝜕𝑥𝑖1

𝜕𝑥𝑖2
⋯𝜕𝑥𝑖𝑛

𝜉𝑖1
𝜉𝑖2

⋯𝜉𝑖𝑛

(summing over all 𝑛-tuples in {1, 2, …, 𝑁}𝑛). For 𝑛 = 0 there is nothing to prove.
Suppose 𝑛 = 1. Since 𝑔 = 𝑓 ∘ 𝛾, 𝛾 : (𝑎, 𝑏) → ℝ𝑁 , 𝛾((𝑎, 𝑏)) ⊂ 𝐷, 𝛾(𝑡) = 𝑥𝑜 + 𝑡𝜉, the
claim implies that 𝑔 is differentiable at 𝑡 ∈ (𝑎, 𝑏) and

𝑔′(𝑡) = ∇𝑓(𝑥0 + 𝑡𝜉) · 𝜉

= ∑
𝑁

𝑖=1

𝜕𝑓
𝜕𝑥𝑖

(𝑥0 + 𝑡𝜉)𝜉𝑖.

Now suppose 𝑛 ≥ 2 and

𝑔(𝑛−1)(𝑡) = ∑
𝑁

𝑖1,…,𝑖𝑛−1=1

𝜕𝑛−1𝑓(𝑥0 + 𝑡𝜉)
𝜕𝑥𝑖1

⋯𝜕𝑥𝑖𝑛−1

𝜉𝑖1
⋯𝜉𝑖𝑛−1

.

Then again by the chain rule, 𝑔(𝑛−1) is differentiable at 𝑡 ∈ (𝑎, 𝑏) and

𝑔(𝑛)(𝑡) = ∑
𝑁

𝑖1,…,𝑖𝑛−1=1

𝑑
𝑑𝑡

(
𝜕𝑛−1𝑓(𝑥0 + 𝑡𝜉)
𝜕𝑥𝑖1

⋯𝜕𝑥𝑖𝑛−1

𝜉𝑖1
⋯𝜉𝑖𝑛−1

)

= ∑
𝑁

𝑖1,…,𝑖𝑛−1=1

𝜕𝑛𝑓(𝑥0 + 𝑡𝜉)
𝜕𝑥𝑖1

⋯𝜕𝑥𝑖𝑛−1
𝜕𝑥𝑖𝑛

𝜉𝑖1
⋯𝜉𝑖𝑛−1

𝜉𝑖𝑛
.

By Clairaut’s theorem and since there are exactly 𝑛!
𝛼!  𝑛-tuples above associated with

multi-index 𝛼 = (𝛼1, …, 𝛼𝑁) we have

𝑔(𝑛) = ∑
|𝛼|=𝑛

𝑛!
𝛼!

𝐷𝛼𝑓(𝑥0 + 𝑡𝜉) · 𝜉𝛼.

□

Theorem 3.21 (Taylor’s theorem in 𝑁  variables) :  Let ⌀ ≠ 𝐷 ⊆ ℝ𝑁  be open, 𝑓 : 𝐷 →
ℝ, 𝑓 ∈ 𝐶𝑛(𝐷), 𝑛 ≥ 1. Let 𝑥0 ∈ 𝐷 and let 𝜉 ∈ ℝ𝑁  be such that 𝑥0 + 𝑡𝜉 ∈ 𝐷 for all 𝑡 ∈
[0, 1] (line segment between 𝑥0 and 𝑥0 + 𝜉). Then there exists 𝜃 ∈ (0, 1) such that

𝑓(𝑥0 + 𝜉) = ∑
|𝛼|≤𝑛−1

𝐷𝛼𝑓(𝑥0)
𝛼!

𝜉𝛼 + ∑
|𝛼|=𝑛

𝐷𝛼𝑓(𝑥0 + 𝜃𝜉)
𝛼!

𝜉𝛼.

Proof :  We need to find 𝜃 ∈ (0, 1) such that

𝑓(𝑥0 + 𝜉) = ∑
|𝛼|≤𝑛−1

𝐷𝛼𝑓(𝑥0)
𝛼!

𝜉𝛼 + ∑
|𝛼|=𝑛

𝐷𝛼𝑓(𝑥0 + 𝜃𝜉)
𝛼!

𝜉𝛼.

Let (𝑎, 𝑏) and 𝑔 : (𝑎, 𝑏) → ℝ, 𝑔(𝑡) = 𝑓(𝑥0 + 𝑡𝜉) be as in Lemma 3.20. By the one
variable Taylor’s theorem, there exists 𝜃 ∈ (0, 1) such that

𝑔(1) = ∑
𝑛−1

𝑘=0

𝑔(𝑘)(0)(1 − 0)𝑘

𝑘!
+

𝑔(𝑛)(0)(1 − 0)𝑛

𝑛!

= ∑
𝑛−1

𝑘=0

𝑔(𝑘)(0)
𝑘!

+
𝑔(𝑛)(0)

𝑛!

(5)

Since

𝑔(𝑘)(0)
𝑘!

=
1
𝑘!⎝

⎜⎛ ∑
|𝛼|=𝑘

𝑘!
𝛼!

𝐷𝛼𝑓(𝑥0)𝜉𝛼

⎠
⎟⎞ (𝑘 ≤ 𝑛 − 1)

and

𝑔(𝑛)(0)
𝑛!

=
1
𝑛!⎝

⎜⎛ ∑
|𝛼|=𝑛

𝑛!
𝛼!

𝐷𝛼𝑓(𝑥0 + 𝜃𝜉)𝜉𝛼

⎠
⎟⎞

substituting this into (5) we get the interval expansion for 𝑓(𝑥0 + 𝜉). □

Example :

a) Suppose 𝑛 = 1. Then

𝑓(𝑥0 + 𝜉) = 𝑓(𝑥0) + ∑
𝑁

𝑖=1

𝜕𝑓
𝜕𝑥𝑖

(𝑥0 + 𝜃𝜉)𝜉𝑖

= 𝑓(𝑥0) + ∇𝑓(𝑥0 + 𝜃𝜉) · 𝜉

(see A3).

b) Suppose 𝑛 = 2 and 𝑁 = 2. Then

𝑓(𝑥0 + 𝜉) = 𝑓(𝑥0) + ∇𝑓(𝑥0) · 𝜉 +
𝑓𝑥𝑥(𝑥0 + 𝜃𝜉)

2
𝜉2
1 +

𝑓𝑦𝑦(𝑥0 + 𝜃𝜉)
2

𝜉2
2 + 𝑓𝑥𝑦(𝑥0 + 𝜃𝜉)𝜉1𝜉2

= 𝑓(𝑥0) + ∇𝑓(𝑥0) · 𝜉 +
1
2
(𝐴(𝑥0 + 𝜃𝜉)𝜉) · 𝜉

where

𝐴(𝑥0 + 𝜃𝜉) = [
𝑓𝑥𝑥(𝑥0 + 𝜃𝜉)
𝑓𝑦𝑥(𝑥0 + 𝜃𝜉)

𝑓𝑥𝑦(𝑥0 + 𝜃𝜉)
𝑓𝑦𝑦(𝑥0 + 𝜃𝜉)

].

Multivariate polynomials

Definition :  A multivariate polynomial 𝑃 : ℝ𝑁 → ℝ for 𝑁  variables of degree 𝑛 is
given by

𝑃(𝜉) = ∑
𝑛

𝑘=0⎝
⎜⎛ ∑

|𝛼|=𝑘
𝑐𝛼𝜉𝛼

⎠
⎟⎞

where 𝑐𝛼 ≠ 0 for some 𝛼 with |𝛼| = 𝑛.

Notice that 𝐷𝛼𝑃(0) = 𝛼!𝑐𝛼 ⟹ 𝑐𝛼 = 𝐷𝛼𝑃(0)
𝛼! .

Definition :  Suppose 𝑓 ∈ 𝐶𝑛+1(𝐷). The 𝑛-th order Taylor approximation of 𝑓  is the
polynomial

𝑇𝑛,𝑥0
(𝜉) = ∑

|𝛼|≤𝑛

𝐷𝛼𝑓(𝑥0)
𝛼!

𝜉𝛼.

The remainder term is

𝑅𝑛(𝜉) = 𝑓(𝑥0 + 𝜉) − 𝑇𝑛,𝑥0
(𝜉) = ∑

|𝛼|=𝑛+1

𝐷𝛼𝑓(𝑥0 + 𝜃𝜉)
𝛼!

𝜉𝛼.
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Proposition 3.22 :  Let 𝑓 ∈ 𝐶𝑛+1(𝐷), 𝐷 open, 𝑓 : 𝐷 → ℝ. Let 𝑥0 ∈ 𝐷. Then

lim
𝜉→0

|𝑅𝑛(𝜉)|
‖𝜉‖𝑛 = 0.

Proof :  Let 𝑟 > 0 be such that 𝐵𝑟[𝑥0] ⊂ 𝐷. Since 𝑓 ∈ 𝐶𝑛+1(𝐷), and 𝐵𝑟[𝑥0] is compact,
we can find 𝑀 ≥ 0 such that |𝐷𝛼𝑓(𝑦)| ≤ 𝑀  for all 𝑦 ∈ 𝐵𝑟[𝑥0] and all multi-index 𝛼
with |𝛼| = 𝑛 + 1.

Then if ‖𝜉‖ ≤ 𝑟 we have 𝛼 with

|𝑅𝑛(𝜉)|
‖𝜉‖𝑛 ≤ ∑

|𝛼|=𝑛+1

|𝐷𝛼𝑓(𝑥0 + 𝜃𝜉)| · |𝜉𝛼|
𝛼!‖𝜉‖𝑛

≤ ∑
|𝛼|=𝑛+1

𝑀
𝛼!

·
‖𝜉‖𝑛+1

‖𝜉‖𝑛

= ∑
|𝛼|=𝑛+1

𝑀
𝛼!

‖𝜉‖

converges to 0 as 𝜉 → 0. □

Example :  Let 𝑓(𝑥, 𝑦) = cos(𝑥 + 2𝑦) defined on ℝ2. Find 𝑇2,(0,0)(𝜉).

Solution :  We have 𝑓(0, 0) = 1. Also,

𝑓𝑥(𝑥, 𝑦) = − sin(𝑥 + 2𝑦)
𝑓𝑦(𝑥, 𝑦) = −2 sin(𝑥 + 2𝑦)

𝑓𝑥𝑥(𝑥, 𝑦) = − cos(𝑥 + 2𝑦)
𝑓𝑦𝑦(𝑥, 𝑦) = −4 cos(𝑥 + 2𝑦)

𝑓𝑥𝑦(𝑥, 𝑦) = −2 cos(𝑥 + 2𝑦).

Then

𝑇2,(0,0)(𝜉1, 𝜉2) = 𝑓(0, 0) + 𝑓𝑥(0, 0)𝜉1 + 𝑓𝑦(0, 0)𝜉2

+
𝑓𝑥𝑥(0, 0)

2
𝜉2
1 +

𝑓𝑦𝑦(0, 0)
2

𝜉2
2 + 𝑓𝑥𝑦(0, 0)𝜉1𝜉2

= 1 −
𝜉2
1
2

−
4
2
𝜉2
2 − 2𝜉1𝜉2

= 1 −
1
2
(𝜉2

1 + 4𝜉2
2 + 4𝜉1𝜉2).

□

The Hession

Definition 3.23 :  Let ⌀ ≠ 𝐷 ⊂ ℝ𝑁  be open, 𝑓 : 𝐷 → ℝ, 𝑓 ∈ 𝐶2(𝐷). The Hessian of 𝑓
at 𝑥 ∈ 𝐷 denoted by (Hess 𝑓)(𝑥) is an 𝑁 × 𝑁  matrix whose (𝑖, 𝑗)-th entry is

𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

(𝑓). That is,

(Hess 𝑓)(𝑥) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝜕2𝑓

𝜕𝑥2
1
(𝑥)

𝜕2𝑓
𝜕𝑥2𝜕𝑥1

(𝑥)
⋮

𝜕2𝑓
𝜕𝑥𝑁𝜕𝑥1

(𝑥)

𝜕2𝑓
𝜕𝑥1𝜕𝑥2

(𝑥)
𝜕2𝑓
𝜕𝑥2

2
(𝑥)
⋮

𝜕2𝑓
𝜕𝑥𝑁𝜕𝑥2

(𝑥)

…

…
⋱
…

𝜕2𝑓
𝜕𝑥1𝜕𝑥𝑁

(𝑥)
𝜕2𝑓

𝜕𝑥2𝜕𝑥𝑁
(𝑥)

⋮
𝜕2𝑓
𝜕𝑥2

𝑁
(𝑥)

⎦
⎥
⎥
⎥
⎥
⎥
⎤

Notice that (Hess 𝑓)(𝑥) is symmetric by Clairaut’s theorem.

Corollary 3.24 :  Let 𝑓 ∈ 𝐶2(𝐷), 𝐷 ⊂ ℝ𝑁  open. Let 𝑥0 ∈ 𝐷 and 𝜉 ∈ ℝ𝑁  be such that
𝑥0 + 𝑡𝜉 ∈ 𝐷 for all 𝑡 ∈ [0, 1]. Then there exists 𝜃 ∈ (0, 1) such that

𝑓(𝑥0 + 𝜉) = 𝑓(𝑥0) + ∇𝑓(𝑥0) · 𝜉 +
1
2
[((Hess 𝑓)(𝑥)(𝑥0 + 𝜃𝜉)𝜉) · 𝜉].

Proof :  It suffices to show that for all 𝑥 ∈ 𝐷 we have

∑
|𝛼|=2

(𝐷𝛼𝑓)(𝑥)
𝛼!

𝜉𝛼 =
1
2
[((Hess 𝑓)(𝑥)(𝑥0 + 𝜃𝜉)𝜉) · 𝜉].

We compute:

∑
|𝛼|=2

(𝐷𝛼𝑓)(𝑥)
𝛼!

𝜉𝛼 = ∑
𝑁

𝑖=1

𝑓𝑥𝑖𝑥𝑖
(𝑥)𝜉2

𝑖

2
+ ∑

𝑖<𝑗
𝑓𝑥𝑖𝑥𝑗

(𝑥)𝜉𝑖𝜉𝑗

=
1
2
(∑

𝑁

𝑖=1
𝑓𝑥𝑖𝑥𝑖

(𝑥)𝜉2
𝑖 + ∑

𝑖≠𝑗
𝑓𝑥𝑖𝑥𝑗

(𝑥)𝜉𝑖𝜉𝑗)

=
1
2
[((Hess 𝑓)(𝑥)(𝑥0 + 𝜃𝜉)𝜉) · 𝜉].

□

Definition 3.25 :  Let 𝑓 ∈ 𝐶1(𝐷), 𝑓 : 𝐷 → ℝ.
a) We say that 𝑥0 ∈ 𝐷 is a stationary point of 𝑓  (or a critical point of 𝑓 ) if ∇𝑓(𝑥0) = 0.
b) 𝑥0 is a local maximum if ∃𝛿 > 0 such that 𝑓(𝑥0) ≥ 𝑓(𝑥) for all 𝑥 ∈ 𝐵𝛿(𝑥0) ∩ 𝐷.

𝑥0 is a local minimum if ∃𝛿 > 0 such that 𝑓(𝑥0) ≤ 𝑓(𝑥) for all 𝑥 ∈ 𝐵𝛿(𝑥0) ∩ 𝐷.

Remark :  If 𝑥0 is a local maximum (or local minimum) of 𝑓  then 𝑥0 is a critical point
because if 𝑔(𝑡) = 𝑓(𝑥0 + 𝑡𝑒𝑖), 1 ≤ 𝑖 ≤ 𝑁 , then 0 is a local maxmimum (or minimum) of
𝑔 and so

0 = 𝑔′(0) =
𝜕𝑓
𝜕𝑥𝑖

(𝑥0) ⟹ ∇𝑓(𝑥0) = 0.

Example :  Let 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2 defined on ℝ2. Then ∇𝑓(𝑥, 𝑦) = (2𝑥, −2𝑦) and so
(0, 0) is a critical point of 𝑓 , but (0, 0) is not a local maximum nor local minimum of 𝑓 .

Figure 12: graph of 𝑥2 − 𝑦2, credit: desmos.

Definition 3.26 :  A critical point of 𝑓  that is not a local maximum nor local minimum
is called a saddle point.

Definition :  Let 𝐴 ∈ 𝕄𝑁(ℝ) be symmetric. We say:
a) 𝐴 is positive definite if (𝐴𝜉) · 𝜉 > 0 for all 𝜉 ∈ ℝ𝑁 , 𝜉 ≠ 0.
b) 𝐴 is positive semidefinite if (𝐴𝜉) · 𝜉 ≥ 0 for all 𝜉 ∈ ℝ𝑁 .
c) 𝐴 is negative definite if (𝐴𝜉) · 𝜉 < 0 for all 𝜉 ∈ ℝ𝑁 , 𝜉 ≠ 0.
d) 𝐴 is negative semidefinite if (𝐴𝜉) · 𝜉 ≤ 0 for all 𝜉 ∈ ℝ𝑁 .
e) 𝐴 is indefinite if there are 𝑥, 𝑦 ∈ ℝ𝑁  with (𝐴𝑥) · 𝑥 > 0, (𝐴𝑦) · 𝑦 < 0.

Example :
• The matrix

[ 2
−1

−1
2 ]

is positive definite.
• The identity matrix

𝐼 =

⎣
⎢
⎢
⎡1

0
⋮
0

0
1
⋮
0

…
…
⋱
…

0
0
⋮
1⎦
⎥
⎥
⎤

is positive definite.
• The matrix

⎣
⎢
⎡1

0
0

0
1
0

0
0

−1⎦
⎥
⎤

is indefinite.
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Lemma 3.27 :  Suppose 𝑓 ∈ 𝐶2(𝐷) and 𝑥0 ∈ 𝐷 such that (Hess 𝑓)(𝑥0) is positive
definite (respectively negative definite). Then there exists 𝛿 > 0 such that 𝑥 ∈ 𝐷 and
𝑥 ∈ 𝐵𝛿(𝑥0) so that (Hess 𝑓)(𝑥) is positive definite (respectively negative definite).

Proof :  We will prove the statement for (Hess 𝑓)(𝑥0) being positive definite. Write
𝐴𝑥 = (Hess 𝑓)(𝑥). Define 𝑄 : ℝ𝑁 → ℝ, 𝑄(𝜉) = (𝐴𝑥0

𝜉) · 𝜉. Then 𝑄 is continuous
because it is the dot product of continuous functions on ℝ𝑁 . For all 𝜉 ∈ 𝑆𝑁−1 =
𝜕𝐵1(0) we have 𝑄(𝜉) > 0. Since 𝑆𝑁−1 is compact, by the extreme value theorem
(Theorem 2.12) there exists 𝑟 > 0 such that 𝑄(𝜉) ≥ 𝑟 for all 𝜉 ∈ 𝑆𝑁−1.

Since 𝑓 ∈ 𝐶2(𝐷) we can find 𝛿 > 0 such that 𝐵𝛿(𝑥0) ⊂ 𝐷, and

∑
𝑁

𝑖=1
|𝑓𝑥𝑖𝑥𝑖

(𝑥) − 𝑓𝑥𝑖𝑥𝑖
(𝑥0)| + ∑

𝑖≠𝑗
|𝑓𝑥𝑖𝑥𝑗

(𝑥) − 𝑓𝑥𝑖𝑥𝑗
(𝑥0)| <

𝑟
2
.

Then if 𝑥 ∈ 𝐵𝛿(𝑥0), we have for 𝜉 ∈ 𝑆𝑁−1 that

|(𝐴𝑥𝜉) · 𝜉 − (𝐴𝑥0
𝜉) · 𝜉| = |∑

𝑁

𝑖=1
(𝑓𝑥𝑖𝑥𝑖

(𝑥) − 𝑓𝑥𝑖𝑥𝑖
(𝑥0))𝜉2

𝑖 + ∑
𝑖≠𝑗

(𝑓𝑥𝑖𝑥𝑗
(𝑥) − 𝑓𝑥𝑖𝑥𝑗

(𝑥0))𝜉𝑖𝜉𝑗|

≤ ∑
𝑁

𝑖=1
|𝑓𝑥𝑖𝑥𝑖

(𝑥) − 𝑓𝑥𝑖𝑥𝑖
(𝑥0)| + ∑

𝑖≠𝑗
|𝑓𝑥𝑖𝑥𝑗

(𝑥) − 𝑓𝑥𝑖𝑥𝑗
(𝑥0)|

<
𝑟
2
.

This implies that for 𝜉 ∈ 𝑆𝑁−1,

(𝐴𝑥𝜉) · 𝜉 > (𝐴𝑥0
𝜉) · 𝜉 −

𝑟
2

≥ 𝑟 −
𝑟
2

=
𝑟
2

> 0.

So 𝑥 ∈ 𝐵𝛿(𝑥0), and 𝜉 ∈ ℝ𝑁 ∖ {0}, so we get

(𝐴𝑥𝜉) · 𝜉 = ‖𝜉‖2(𝐴𝑥(
𝜉

‖𝜉‖
)) ·

𝜉
‖𝜉‖

> 0.

Thus 𝐴𝑥 is positive definite for all 𝑥 ∈ 𝐵𝛿(𝑥0). □

Theorem 3.28 (second derivative test) :  Let ⌀ ≠ 𝐷 ⊂ ℝ𝑁  be open and 𝑓 : 𝐷 → ℝ, 𝑓 ∈
𝐶2(𝐷). Let 𝑥0 ∈ 𝐷 be a critical point of 𝑓 . Then:
1. If (Hess 𝑓)(𝑥0) is positive definite, then 𝑓  has a local minimum at 𝑥0.
2. If (Hess 𝑓)(𝑥0) is negative definite, then 𝑓  has a local maximum at 𝑥0.
3. If (Hess 𝑓)(𝑥0) is indefinite, then 𝑓  has a saddle point at 𝑥0.

Proof :
1. Suppose (Hess 𝑓)(𝑥0) is positive definite. Let 𝛿 > 0 be such that (Hess 𝑓)(𝑥0) is

positive definite for all 𝑥 ∈ 𝐵𝛿(𝑥0). Take 𝑥 ∈ 𝐵𝛿(𝑥0). Write 𝜉 ≔ 𝑥 − 𝑥0, so that
‖𝜉‖ < 𝛿. By Taylor’s theorem there exists 𝜃 ∈ (0, 1) such that

𝑓(𝑥0 + 𝜉) = 𝑓(𝑥0) + ∇𝑓(𝑥0) · 𝜉 +
1
2
[(Hess 𝑓)(𝑥𝑜 + 𝜃𝜉)𝜉] · 𝜉

= 𝑓(𝑥0) +
1
2
[(Hess 𝑓)(𝑥𝑜 + 𝜃𝜉)𝜉] · 𝜉.

Then

𝑓(𝑥) − 𝑓(𝑥0) = 𝑓(𝑥0 + 𝜉) − 𝑓(𝑥0)

=
1
2
[(Hess 𝑓)(𝑥0 + 𝜃𝜉)𝜉] · 𝜉

> 0.

Thus 𝑥0 is a local minimum of 𝑓 .
2. Follows as in the proof of 1.
3. Suppose (Hess 𝑓)(𝑥0) is indefinite. We need to show that given 𝜀 > 0, there are

𝑥, 𝑦 ∈ 𝐵𝜀(𝑥0) ∩ 𝐷 such that

𝑓(𝑥) < 𝑓(𝑥0) < 𝑓(𝑦).

Let 𝜉1, 𝜉2 be unit vectors in ℝ𝑁  such that

[(Hess 𝑓)(𝑥0)𝜉1] · 𝜉1 < 0 and [(Hess 𝑓)(𝑥0)𝜉2] · 𝜉2 > 0.

Arguing as in the proof of Lemma 3.27 we can find 𝛿 > 0 such that 𝐵𝛿(𝑥0) ⊂ 𝐷 and
if 𝑥 ∈ 𝐵𝛿(𝑥0),

[(Hess 𝑓)(𝑥)𝜉1] · 𝜉1 < 0 and [(Hess 𝑓)(𝑥)𝜉2] · 𝜉2 > 0.

Then given 𝜀 > 0, let 𝜀′ ≔ min{𝛿, 𝜀} and let 𝜉𝜀′ = 𝜀′

2 𝜉1, 𝜂𝜀′ = 𝜀′

2 𝜉2. So 𝑥0 +
𝜉𝜀′ , 𝑥0 + 𝜂𝜀′ ∈ 𝐵𝛿(𝑥0).

By Taylor’s theorem there are 𝜃1, 𝜃2 ∈ (0, 1) such that

𝑓(𝑥0 + 𝜉𝜀′) = 𝑓(𝑥0) + (
𝜀′

2
)

2

·
1
2
[(Hess 𝑓)(𝑥0 + 𝜉𝜀′)𝜉1] · 𝜉1,

𝑓(𝑥0 + 𝜂𝜀′) = 𝑓(𝑥0) + (
𝜀′

2
)

2

·
1
2
[(Hess 𝑓)(𝑥0 + 𝜂𝜀′)𝜉2] · 𝜉2.

(6)

Setting 𝑥 = 𝑥0 + 𝜉𝜀′  and 𝑦 = 𝑥0 + 𝜂𝜀′  we see that 𝑥, 𝑦 ∈ 𝐵𝛿(𝑥0) and by (6), 𝑓(𝑥) <
𝑓(𝑥0) < 𝑓(𝑦).

□

Theorem (from linear algebra, 1/2) :  Let 𝐴 = (𝑎𝑖𝑗) ∈ 𝕄𝑁(ℝ) be symmetric. The
following are equivalent:
1. 𝐴 is positive definite.
2. All eigenvalues of 𝐴 are positive.
3. For all 𝑘 = 1, …, 𝑁 ,

det

⎣
⎢
⎢
⎡

𝑎11
𝑎21
⋮

𝑎𝑘1

𝑎12
𝑎22
⋮

𝑎𝑘2

⋯
⋯
⋱
⋯

𝑎1𝑘
𝑎2𝑘
⋮

𝑎𝑘𝑘⎦
⎥
⎥
⎤

> 0.

Theorem (from linear algebra, 2/2) :  Let 𝐴 = (𝑎𝑖𝑗) ∈ 𝕄𝑁(ℝ) be symmetric. The
following are equivalent:
1. 𝐴 is negative definite.
2. All eigenvalues of 𝐴 are negative.
3. For all 𝑘 = 1, …, 𝑁 ,

(−1)𝑘 det

⎣
⎢
⎢
⎡

𝑎11
𝑎21
⋮

𝑎𝑘1

𝑎12
𝑎22
⋮

𝑎𝑘2

⋯
⋯
⋱
⋯

𝑎1𝑘
𝑎2𝑘
⋮

𝑎𝑘𝑘⎦
⎥
⎥
⎤

> 0.

Corollary 3.29 (second derivative test in ℝ2) :  Let ⌀ ≠ 𝐷 ⊂ ℝ2 be open, 𝑓 : 𝐷 →
ℝ, 𝑓 ∈ 𝐶2(𝐷). Let 𝑥0 ∈ 𝐷 be a critical point of 𝑓 . Then:
1. If 𝑓𝑥𝑥(𝑥0) > 0 and 𝑓𝑥𝑥(𝑥0)𝑓𝑦𝑦(𝑥0) − 𝑓𝑥𝑦(𝑥0)

2 > 0, then 𝑥0 is a local minimum of
𝑓 .

2. If 𝑓𝑥𝑥(𝑥0) < 0 and 𝑓𝑥𝑥(𝑥0)𝑓𝑦𝑦(𝑥0) − 𝑓𝑥𝑦(𝑥0)
2 > 0, then 𝑥0 is a local maximum of

𝑓 .
3. If 𝑓𝑥𝑥(𝑥0)𝑓𝑦𝑦(𝑥0) − 𝑓𝑥𝑦(𝑥0)

2 < 0, then 𝑓  has a saddle point at 𝑥0.

Proof :
1. and 2. are clear.
3. Let 𝜆1, 𝜆2 be the eigenvalues of (Hess 𝑓)(𝑥0). Then

𝑓𝑥𝑥(𝑥0)𝑓𝑦𝑦(𝑥0) − 𝑓𝑥𝑦(𝑥0)
2 = det(Hess 𝑓)(𝑥0) = 𝜆1𝜆2.

So 𝜆1𝜆2 < 0, hence 𝜆1, 𝜆2 have oppositive signs. If 𝜉1, 𝜉2 are eigenvectors, we have

[(Hess 𝑓)(𝑥0)𝜉1] · 𝜉2 and [(Hess 𝑓)(𝑥0)𝜉2] · 𝜉2

have oppositive signs. Thus (Hess 𝑓)(𝑥0) is indefinite.

□
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Example :  Let 𝐾 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑥2 + 𝑦2 ≤ 1} and let 𝑓 : 𝐾 → ℝ, 𝑓(𝑥, 𝑦) = 𝑥2 −
𝑥𝑦 + 𝑦2. Find the global maximum and minimum of 𝑓  on 𝐾 .

Solution :  Since 𝐾 is compact, and 𝑓  is continuous, we know from the extreme
value theorem (Theorem 2.12) that the problem has a solution.

Let 𝐷 = 𝐾° = 𝐵1(0, 0). We have 𝑓𝑥 = 2𝑥 − 𝑦 and 𝑓𝑦 = 2𝑦 − 𝑥. Then (0, 0) is
the only critical point of 𝑓  in 𝐷. We have 𝑓𝑥𝑥 = 2, 𝑓𝑦𝑦 = 2, 𝑓𝑥𝑦 = −1. So

(Hess 𝑓)(0, 0) = [ 2
−1

−1
2 ].

Thus 𝑓𝑥𝑥 > 0 and 𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓2
𝑥𝑦 > 0, so (Hess 𝑓)(0, 0) is positive definite and by

the second derivative test, 𝑓  has a local minimum at (0, 0).

Now we need to verify

𝜕𝐾 = {(𝑥, 𝑦) | 𝑥2 + 𝑦2 = 1} = {(cos 𝜃, sin 𝜃) | 0 ≤ 𝜃 ≤ 2𝜋}.

Consider

𝑔(𝜃) = 𝑓(cos 𝜃, sin 𝜃)

= cos2 𝜃 − cos 𝜃 sin 𝜃 + sin2 𝜃
= 1 − cos 𝜃 sin 𝜃

= 1 −
sin(2𝜃)

2
.

We have 𝑔(𝜃) ≥ 1
2 . Hence 𝑓  attains its local minimium on 𝐾 at (0, 0). We have

𝑔′(𝜃) = − cos(2𝜃). Thus the critical points of 𝑔 in (0, 2𝜋) are

𝜃1 =
𝜋
4
, 𝜃2 =

3𝜋
4

, 𝜃3 =
5𝜋
4

, 𝜃4 =
7𝜋
4

.

Now 𝑔″(𝜃) = 2 sin(2𝜃), giving that

𝑔″(𝜃1) = 2 = 𝑔″(𝜃3) and 𝑔″(𝜃2) = −2 = 𝑔″(𝜃4).

Also, 𝑔(0) = 1 = 𝑔(2𝜋). Thus 𝜃2, 𝜃4 are local maximums of 𝑔. Compute 𝑔(𝜃2) =
3
2 = 𝑔(𝜃4). It follows that 𝑓  attains its maximum at (cos 𝜃2, sin𝜃2

) = (−
√

2
2 ,

√
2

2 )
and (cos 𝜃4, sin 𝜃4) = (

√
2

2 , −
√

2
2 ). □

Local properties of continuously differentiable functions

Inverse function theorem

Roughly, the inverse function theorem says that if 𝐷 ⊂ ℝ𝑁 , 𝑓 : 𝐷 → ℝ, 𝑓 ∈ 𝐶1(𝐷, ℝ𝑁), and
(𝐷𝑓)(𝑥0) is invertible, then there exists an open neighbourhood 𝑈  of 𝑥0 such that 𝑓  is
injective on 𝑈 , and 𝑓−1 : 𝑓(𝑈) → ℝ𝑁  is also continuously differentiable.

Definition 4.1 :  Let ⌀ ≠ 𝑆 ⊂ ℝ𝑁  and 𝛾 : 𝑆 → 𝑆. We say that 𝛾 is a contraction if there
exists 0 ≤ 𝑐 < 1 such that ‖𝛾(𝑥) − 𝛾(𝑦)‖ ≤ 𝑐‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝑆.

Note :  All contractions are Lipschitz continuous with a Lipschitz constant less than 1.

Theorem 4.2 (Contraction mapping principle) :  Let 𝐷 ≠ 𝐹 ⊂ ℝ𝑁  be closed and 𝛾 :
𝐹 → 𝐹  a contraction. Then there exists a unique 𝑥∗ ∈ 𝐹  such that 𝛾(𝑥∗) = 𝑥∗ (that is,
𝛾 has a unique fixed point 𝑥∗ ∈ 𝐹 ).

Proof :  For uniqueness suppose 𝑥∗, 𝑦∗ are fixed points of 𝛾. Then

‖𝑥∗ − 𝑦∗‖ = ‖𝛾(𝑥∗) − 𝛾(𝑦∗)‖ ≤ 𝑐‖𝑥∗ − 𝑦∗‖ < ‖𝑥∗ − 𝑦∗‖

if ‖𝑥∗ − 𝑦∗‖ < 0. Hence we must have 𝑥∗ = 𝑦∗.

For existence of 𝑥∗, take 𝑥0 ∈ 𝐹 . Define a sequence (𝑥𝑛) in 𝐹  recursively by setting
𝑥𝑛 ≔ 𝛾(𝑥𝑛−1), 𝑛 ≥ 1. For 𝑛 = 1,

‖𝑥𝑛+1 − 𝑥𝑛‖ = ‖𝑥2 − 𝑥1‖ = ‖𝛾(𝑥1) − 𝛾(𝑥0)‖ ≤ 𝑐‖𝑥1 − 𝑥0‖

‖𝑥3 − 𝑥2‖ = ‖𝛾(𝑥2) − 𝛾(𝑥1)‖ ≤ 𝑐‖𝑥2 − 𝑥1‖ ≤ 𝑐2‖𝑥1 − 𝑥0‖.

Continuing with this process by induction we obtain for all 𝑛 ≥ 1,

‖𝑥𝑛+1 − 𝑥𝑛‖ = ‖𝛾(𝑥𝑛) − 𝛾(𝑥𝑛−1)‖ ≤ 𝑥𝑛‖𝑥1 − 𝑥0‖.

Then if 𝑚 ≥ 𝑛 ≥ 1, we have

‖𝑥𝑚 − 𝑥𝑛‖ = ‖∑
𝑚−1

𝑘=𝑛
(𝑥𝑘+1 − 𝑥𝑘)‖

≤ ∑
𝑚−1

𝑘=𝑛
‖𝑥𝑘−1 − 𝑥𝑘‖

≤ ∑
𝑚−1

𝑘=𝑛
𝑐𝑘‖𝑥1 − 𝑥0‖.

Since the series ∑∞
𝑘=1 𝑐𝑘‖𝑥1 − 𝑥0‖ converges because 0 ≤ 𝑐 < 1, we deduce that (𝑥𝑛)

is a Cauchy sequence. We let 𝑥∗ ≔ lim𝑛→∞ 𝑥𝑛. Then 𝑥∗ ∈ 𝐹  because 𝐹  is closed. Since
𝛾 is continuous, we get

𝛾(𝑥∗) = lim
𝑛→∞

𝛾(𝑥𝑛) = lim
𝑛→∞

𝑥𝑛+1 = 𝑥∗

proving that 𝑥∗ is a fixed point of 𝑓 . □

Theorem 4.3 :  Let ⌀ ≠ 𝐷 ⊂ ℝ𝑁  be an open convex set. Let 𝑓 : 𝐷 → ℝ𝑀  be
differentiable and suppose that there exists some 𝑀 ∈ ℝ such that ‖(𝐷𝑓)(𝑥)‖ ≤ 𝑀  for
all 𝑥 ∈ 𝐷. Then for all 𝑥, 𝑦 ∈ 𝐷 we have

‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝑀‖𝑥 − 𝑦‖.

Proof :  Fix 𝑥, 𝑦 ∈ 𝐷, 𝑥 ≠ 𝑦 and consider 𝑔 : 𝐷 → ℝ, 𝑔(𝑧) = (𝑓(𝑥) − 𝑓(𝑦)) · 𝑓(𝑧). Then
𝑔 is differentiable and

∇𝑔(𝑧) = (𝑓(𝑥) − 𝑓(𝑦))𝑇 (𝐷𝑓)(𝑧)

by the product rule. By A3Q3, there exists 𝜉 in the line segment between 𝑥, 𝑦 such that

𝑔(𝑥) − 𝑔(𝑦) = ∇𝑔(𝜉) · (𝑥 − 𝑦)

⟹ ‖𝑓(𝑥) − 𝑓(𝑦)‖2 = (𝑓(𝑥) − 𝑓(𝑦))𝑇 (𝐷𝑓)(𝜉)(𝑥 − 𝑦)

⟹ ‖𝑓(𝑥) − 𝑓(𝑦)‖2 ≤ ‖𝑓(𝑥) − 𝑓(𝑦)‖ · 𝑀‖𝑥 − 𝑦‖
⟹ ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝑀‖𝑥 − 𝑦‖.

□
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Theorem 4.4 (Inverse function theroem) :  Let ⌀ ≠ 𝐷 ⊂ ℝ𝑁  be open and 𝑓 ∈
𝐶1(𝐷, ℝ𝑁). Let 𝑥0 ∈ 𝐷 be such that (𝐷𝑓)(𝑥0) is invertible and set 𝑦0 ≔ 𝑓(𝑥0). Then:
a) There exist open sets 𝑈 ⊂ 𝐷, 𝑉 ⊂ ℝ𝑁  with 𝑥0 ∈ 𝑈, 𝑦0 ∈ 𝑉  such that 𝑓  is injective

on 𝑈  and 𝑉 = 𝑓(𝑈).
b) If 𝑔 : 𝑉 → ℝ𝑁  is the inverse of 𝑓  defined on 𝑉  (i.e. 𝑔(𝑓(𝑥)) = 𝑥, ∀𝑥 ∈ 𝑈 ), then 𝑔 is

continuously differentiable and

(𝐷𝑔)(𝑦) = [(𝐷𝑓)(𝑔(𝑦))]−1.

Remark :
• Recall from linear algebra that a linear map is invertible if and only if the determinant

of its associated matrix is non-zero. So (𝐷𝑓)(𝑥0) is invertible if and only if
det(𝐽𝑓(𝑥0)) ≠ 0.

• If we write

𝑓(𝑥1, …, 𝑥𝑁) = (𝑓1(𝑥1, …, 𝑥𝑁), …, 𝑓𝑁(𝑥1, …, 𝑥𝑁))
= (𝑦1, …, 𝑦𝑁)

so that

𝑦1 = 𝑓1(𝑥1, …, 𝑥𝑁)
𝑦2 = 𝑓2(𝑥1, …, 𝑥𝑁)

⋮
𝑦𝑁 = 𝑓𝑁(𝑥1, …, 𝑥𝑁).

(7)

Then the inverse function theorem tells us that the system given by (7) can be solved for
𝑥1, …, 𝑥𝑁  in terms of 𝑦1, …, 𝑦𝑁  when we restrict to small neighbourhoods of 𝑥0 and 𝑦0,
and the solution is continuously differentiable.

Example :  Let 𝑢 = 𝑥4+𝑦4

𝑥  and 𝑣 = sin 𝑥 + cos 𝑦. Can we solve the system above for 𝑥
and 𝑦 in terms of 𝑢 and 𝑣?

We have for 𝑓(𝑥, 𝑦) = (𝑥4+𝑦4

𝑥 , sin 𝑥 + cos 𝑦),

𝐽𝑓(𝑥, 𝑦) = [
3𝑥4−𝑦4

𝑥2

cos 𝑥

4𝑦3

𝑥
− sin 𝑦

].

So det(𝐽𝑓(𝑥, 𝑦)) = − sin 𝑦 · 3𝑥4−𝑦4

𝑥2 − 4𝑦3

𝑥 cos 𝑥. If for example 𝑥0 = (𝑥, 𝑦) = (𝜋
2 , 𝜋

2)
then

det(𝐽𝑓(𝑥0)) = −[3(
𝜋
2
)

2
− (

𝜋
2
)

2
] = −2(

𝜋
2
)

2
≠ 0.

Hence the inverse function theorem says that near 𝑥0 we can solve the system for 𝑥
and 𝑦 in terms of 𝑢 and 𝑣.

Proof :  The formula (𝐷𝑔)(𝑦) follows from Q5c on the midterm.

a) Set 𝐴 ≔ (𝐷𝑓)(𝑥0). Let 𝑈  be an open ball such that

‖(𝐷𝑓)(𝑥) − 𝐴‖ < 𝜆

where 𝜆 = 1
2‖𝐴−1‖ . This exists because 𝑓  is continuously differentiable. We can also

assume that (𝐷𝑓)(𝑥) is invertible for all 𝑥 ∈ 𝑈  (by A4Q5). For 𝑦 ∈ ℝ𝑁  fixed define
𝛾𝑦 : 𝐷 → ℝ𝑁  by

𝛾𝑦(𝑥) = 𝑥 + 𝐴−1(𝑦 − 𝑓(𝑥)).

Claim 1: 𝑦 = 𝑓(𝑥) if and only if 𝑥 is a fixed point of 𝛾𝑦. Indeed, 𝑦 = 𝑓(𝑥) gives
𝛾𝑦(𝑥) = 𝑥 since 𝐴−1(𝑦 − 𝑓(𝑥)) = 0. Conversely, if 𝛾𝑦(𝑥) = 𝑥 then 𝐴−1(𝑦 −
𝑓(𝑥)) = 0 which implies that 𝑦 − 𝑓(𝑥) = 0 because 𝐴−1 is injective.

Claim 2: ‖𝛾𝑦(𝑥) − 𝛾𝑦(𝑧)‖ ≤ 1
2‖𝑥 − 𝑧‖ for all 𝑥, 𝑧 ∈ 𝑈 . Notice that

𝛾𝑦(𝑥) = 𝐼𝑥 + 𝐴−1𝑦 − 𝐴−1𝑓(𝑥)

where 𝐼  is the identity map. By the chain rule, 𝛾𝑦 is differentiable and

(𝐷𝛾𝑦)(𝑥) = 𝐼 − 𝐴−1(𝐷𝑓)(𝑥).

Then

‖(𝐷𝛾𝑦)(𝑥)‖ = ‖𝐴−1𝐴 − 𝐴−1(𝐷𝑓)(𝑥)‖

= ‖𝐴−1(𝐴 − (𝐷𝑓)(𝑥))‖

≤ ‖𝐴−1‖ · ‖𝐴 − (𝐷𝑓)(𝑥)‖

< ‖𝐴−1‖ ·
1

2‖𝐴−1‖

=
1
2
.

Hence by Theorem 4.3, ‖𝛾𝑦(𝑥) − 𝛾𝑦(𝑧)‖ ≤ 1
2‖𝑥 − 𝑧‖ for all 𝑥, 𝑧 ∈ 𝑈 .

This shows that 𝛾𝑦 has at most one fixed point in 𝑈 , hence 𝑓  is injective in 𝑈  by
Claim 1. Set 𝑉 = 𝑓(𝑈). We will show that 𝑉  is open. Let 𝑤 ∈ 𝑉  and 𝑧 ∈ 𝑈  such
that 𝑤 = 𝑓(𝑧). Let 𝑟 > 0 be such that 𝐵𝑧 ≔ 𝐵𝑟[𝑧] ⊂ 𝑈 . We will find 𝛿 > 0 such that
if ‖𝑦 − 𝑤‖ < 𝛿 then 𝛾𝑦(𝐵𝑧) ⊂ 𝐵𝑧. First, notice that if 𝑥 ∈ 𝐵𝑧 then by Claim 2,

‖𝛾𝑦(𝑥) − 𝛾𝑦(𝑧)‖ ≤
1
2
‖𝑥 − 𝑧‖ =

𝑟
2
.

Let 𝛿 ≔ 𝜆𝑟 and let 𝑦 ∈ ℝ𝑁 , so ‖𝑦 − 𝑤‖ < 𝛿. Then

‖𝛾𝑦(𝑧) − 𝑧‖ = ‖𝑧 + 𝐴−1(𝑦 − 𝑓(𝑧)) − 𝑧‖

= ‖𝐴−1(𝑦 − 𝑤)‖

≤ ‖𝐴−1‖ · ‖𝑦 − 𝑤‖

< ‖𝐴−1‖ ·
1

2‖𝐴−1‖
· 𝑟

=
𝑟
2
.

Thus if ‖𝑦 − 𝑤‖ < 𝛿, and 𝑥 ∈ 𝐵𝑧 we have

‖𝛾𝑦(𝑥) − 𝑧‖ ≤ ‖𝛾𝑦(𝑥) − 𝛾𝑦(𝑧)‖ + ‖𝛾𝑦(𝑧) − 𝑧‖

≤
𝑟
2

+
𝑟
2

= 𝑟

giving that 𝛾𝑦(𝐵𝑧) = 𝐵𝑧. By the contraction on mapping principle (Theorem 4.2), 𝛾𝑦
has a (unique) fixed point 𝑥∗ ∈ 𝐵𝑧 ⟹ 𝑦 = 𝑓(𝑥∗) ∈ 𝑓(𝑈) = 𝑉  by Claim 1. This
shows that 𝑓(𝑈) is open.

b) Let 𝑔 : 𝑉 → ℝ𝑁  be the inverse of 𝑓  on 𝑈 . Let 𝑦, 𝑦 + 𝑘 ∈ 𝑉 . Let 𝑥, 𝑥 + ℎ ∈ 𝑈  such
that 𝑓(𝑥) = 𝑦, 𝑓(𝑥 + ℎ) = 𝑦 + 𝑘. Notice that ℎ is uniquely determined by 𝑘, and

𝛾𝑦(𝑥 + ℎ) − 𝛾𝑦(𝑥) = ℎ + 𝐴−1(𝑦 − 𝑓(𝑥 + ℎ))

= ℎ − 𝐴−1𝑘.

Thus by Claim 2,

‖ℎ − 𝐴−1𝑘‖ ≤
1
2
‖𝑥 + ℎ − 𝑥‖ =

‖ℎ‖
2

⟹ |‖𝐴−1𝑘‖ − ‖ℎ‖| ≤
‖ℎ‖
2

giving that ‖𝐴−1𝑘‖ ≥ ‖ℎ‖
2 . Hence

‖ℎ‖ ≤ ‖𝐴−1‖ · 2‖𝑘‖ = 𝜆−1‖𝑘‖. (8)

Let 𝑇 = [(𝐷𝑓)(𝑥)]−1. Then

𝑔(𝑦 + 𝑘) − 𝑔(𝑦) − 𝑇𝑘 = ℎ − 𝑇𝑘

= 𝑇𝑇 −1ℎ − 𝑇𝑘
= 𝑇 [(𝐷𝑓)(𝑥)ℎ − (𝑓(𝑥 + ℎ) − 𝑓(𝑥))].

(9)

Now we have by (8) and (9)

‖𝑔(𝑦 + 𝑘) − 𝑔(𝑦) − 𝑇𝑘‖
‖𝑘‖

≤
‖𝑇 ‖ · ‖𝑓(𝑥 + ℎ) − 𝑓(𝑥) − (𝐷𝑓)(𝑥)ℎ‖

𝜆‖ℎ‖
.

Taking the limit as 𝑘 → 0, then ℎ → 0 and it follows that

lim
𝑘→0

‖𝑔(𝑦 + 𝑘) − 𝑔(𝑦) − 𝑇𝑘‖
‖𝑘‖

= 0.

So 𝑔 is differentiable at 𝑦.

Finally we will show that 𝑔 ∈ 𝐶1(𝑉 , ℝ𝑁), and that 𝑦 ↦ 𝐽𝑔(𝑦), 𝑦 ∈ 𝑉  is continuous.
This follows because the map is the composition

↑𝑔 ↑𝐽𝑓 ↑inv

↑ ↑ ↑

𝑉 𝑈 𝐺𝐿𝑁(ℝ) 𝐺𝐿𝑁(ℝ)

𝑦 𝑔(𝑦) 𝐽𝑓(𝑔(𝑦)) 𝐽𝑓(𝑔(𝑦))−1

All the maps are continuous (see A4Q5), hence 𝑔 ∈ 𝐶1(𝑉 , ℝ𝑁). □

Note :  𝐺𝐿𝑁(ℝ) ⊂ 𝕄𝑁(ℝ) denotes the set of all 𝑁 × 𝑁  invertible matrices over ℝ.
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Theorem 4.5 (open mapping theorem) :  Let ⌀ ≠ 𝐷 ⊂ ℝ𝑁  be open, 𝑓 ∈ 𝐶1(𝐷, ℝ𝑁).
Suppose that (𝐷𝑓)(𝑥) is invertible for all 𝑥 ∈ 𝐷. Then for every 𝑊 ⊂ 𝐷 open,
𝑓(𝑊) ⊂ ℝ𝑁  is open.

Proof :  exercise. □

Implicit function theorem

Let 𝑓  be a function defined on ℝ2, we write 𝑧 = 𝑓(𝑥, 𝑦). The level curve of 𝑓  determined by
𝑐 ∈ ℝ is the set of all points in ℝ2 such that 𝑓(𝑥, 𝑦) = 𝑐.

We wish to locally express the set of points 𝑓(𝑥, 𝑦) = 0 as the graph of a function 𝑦 = 𝑔(𝑥).

Example :
a) 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦. Then 𝑓(𝑥, 𝑦) = 0 gives 𝑦 = 𝑥2. Take 𝑔(𝑥) = 𝑥2.
b) 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 1 near (1, 0). We cannot express the set 𝑓(𝑥, 𝑦) = 0 as the

graph of a function 𝑦 = 𝑔(𝑥).

Notation :  We will write (𝑥, 𝑦) ∈ ℝ𝑁+𝑀  as

(𝑥, 𝑦) = (𝑥1, 𝑥2, …, 𝑥𝑁 , 𝑦1, 𝑦2, …, 𝑦𝑀).

Given a system of equations

𝑓1(𝑥1, …, 𝑥𝑁 , 𝑦1, …, 𝑦𝑁) = 0
𝑓2(𝑥1, …, 𝑥𝑁 , 𝑦1, …, 𝑦𝑁) = 0

⋮
𝑓𝑀(𝑥1, …, 𝑥𝑁 , 𝑦1, …, 𝑦𝑁) = 0

we want to locally express 𝑦 in terms of 𝑥 so that

𝑦1 = 𝑔1(𝑥1, …, 𝑥𝑁), 𝑦2 = 𝑔2(𝑥1, …, 𝑥𝑁), …, 𝑦𝑀 = 𝑔𝑀(𝑥1, …, 𝑥𝑁).

The linear case

Suppose 𝑓(𝑥, 𝑦) = 𝐴[𝑥
𝑦], 𝐴 ∈ 𝕄𝑀×(𝑁+𝑀)(ℝ). In this case, 𝐴 = [𝐴𝑥 𝐴𝑦] for 𝐴𝑥 ∈

𝕄𝑀×𝑁(ℝ), 𝐴𝑦 = 𝕄𝑀×𝑀(ℝ). Then 𝑓(𝑥, 𝑦) = 0 gives 𝐴𝑥𝑥 + 𝐴𝑦𝑦 = 0.

From linear algebra we know that if 𝐴𝑦 is invertible then the equation 𝐴𝑥𝑥 + 𝐴𝑦𝑦 = 0
uniquely determines 𝑦 in terms of 𝑥 by 𝑦 = −𝐴−1

𝑦 𝐴𝑥𝑥.

In general, given a linear transformation 𝐴 : ℝ𝑁+𝑀 → ℝ𝑀 , we can split 𝐴 into two linear
transformations 𝐴𝑥 : ℝ𝑁 → ℝ𝑀 , 𝐴𝑦 : ℝ𝑀 → ℝ𝑀  where 𝐴𝑥𝑥 = 𝐴(𝑥, 0) and 𝐴𝑦𝑦 = 𝐴(0, 𝑦),
so that

𝐴(𝑥, 𝑦) = 𝐴𝑥𝑥 + 𝐴𝑦𝑦.

If 𝑓  is differentiable, 𝐴 = 𝐽𝑓(𝑥0), write

𝐴𝑥 =
𝜕𝑓
𝜕𝑥

, 𝐴𝑦 =
𝜕𝑓
𝜕𝑦

since

𝐽𝑓(𝑥0) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝜕𝑓1

𝜕𝑥1

𝜕𝑓2
𝜕𝑥1

⋮
𝜕𝑓𝑀
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

𝜕𝑓2
𝜕𝑥2

⋮
𝜕𝑓𝑀
𝜕𝑥2

⋯

⋯
⋱
⋯

𝜕𝑓1
𝜕𝑥𝑁

𝜕𝑓2
𝜕𝑥𝑁

⋮
𝜕𝑓𝑀
𝜕𝑥𝑁

𝜕𝑓1
𝜕𝑦1

𝜕𝑓2
𝜕𝑦1

⋮
𝜕𝑓𝑀
𝜕𝑦1

𝜕𝑓1
𝜕𝑦2

𝜕𝑓2
𝜕𝑦2

⋮
𝜕𝑓𝑀
𝜕𝑦2

⋯

⋯
⋱
⋯

𝜕𝑓1
𝜕𝑦𝑀

𝜕𝑓2
𝜕𝑦𝑀

⋮
𝜕𝑓𝑀
𝜕𝑦𝑀 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

.

Theorem 4.6 (Implicit function theorem) :  Let ⌀ ≠ 𝐷 ⊂ ℝ𝑁+𝑀  be open and 𝑓 ∈
𝐶1(𝐷, ℝ𝑀). Let (𝑥0, 𝑦0) ∈ ℝ𝑁+𝑀  be such that 𝑓(𝑥0, 𝑦0) = 0 and let 𝐴 =
(𝐷𝑓)(𝑥0, 𝑦0). Suppose that 𝐴𝑦 is invertible, that is

det

⎣
⎢
⎢
⎢
⎡

𝜕𝑓1
𝜕𝑦1

⋮
𝜕𝑓𝑀
𝜕𝑦1

⋯
⋱
⋯

𝜕𝑓1
𝜕𝑦𝑀

⋮
𝜕𝑓𝑀
𝜕𝑦𝑀 ⎦

⎥
⎥
⎥
⎤

≠ 0

at (𝑥0, 𝑦0). Then there exists an open neighbourhood 𝑈  of (𝑥0, 𝑦0) and 𝑊 ⊂ ℝ𝑁  an
open neighbourhood of 𝑥0 such that:
a) For every 𝑥 ∈ 𝑊 , there exists a unique (𝑥, 𝑦𝑥) ∈ 𝑈  such that 𝑓(𝑥, 𝑦𝑥) = 0.
b) If we define 𝑔 : 𝑊 → ℝ𝑀 , 𝑔(𝑥) = 𝑦 where 𝑦 is as in part a), then 𝑔 is continuously

differentiable, (𝑥, 𝑦) ∈ 𝑈, 𝑓(𝑥, 𝑦) = 0 ⟹ 𝑦 = 𝑔(𝑥) and

(𝐷𝑔)(𝑥0) = −𝐴−1
𝑦 𝐴𝑥.

Remark :  The function 𝑔 is implicitly define by the equation 𝑓(𝑥, 𝑦) = 0.

Proof :

a) Define 𝐹 : 𝐷 → ℝ𝑁+𝑀  by 𝐹(𝑥, 𝑦) = (𝑥, 𝑓(𝑥, 𝑦)). Then 𝑓  is continuously
differentiable because 𝑓  is. We claim that (𝐷𝐹)(𝑥0, 𝑦0) is invertible. Indeed, we have

𝐽𝐹 (𝑥0, 𝑦0) =
⎣
⎢⎡

𝐼𝑁
𝜕𝑓
𝜕𝑥

0𝑛×𝑀
𝜕𝑓
𝜕𝑦 ⎦

⎥⎤.

Since this matrix is lower-triangular,

det 𝐽𝐹 (𝑥0, 𝑦0) = det(𝐼𝑁) · det(
𝜕𝑓
𝜕𝑦

) ≠ 0

because 𝐴𝑦 is invertible. Then the inverse function theorem (Theorem 4.4) gives us
an open neighbourhood 𝑈 ⊂ 𝐷 of (𝑥0, 𝑦0) such that 𝑉 ≔ 𝐹(𝑈) is open, 𝐹  is
injective on 𝑈  and 𝐺 : 𝑉 → ℝ𝑁+𝑀  is also continuously differentiable.

We define 𝑊 ⊂ ℝ𝑁  by 𝑊 = {𝑥 ∈ ℝ𝑁 | (𝑥, 0𝑀) ∈ 𝑉 }. Then 𝑥0 ∈ 𝑊  because
(𝑥0, 𝑦0) ∈ 𝑈  and 𝐹(𝑥0, 𝑦0) = (𝑥0, 0𝑀). Also, 𝑊  is open because 𝑉  is open. If 𝑥 ∈
𝑊 , then because 𝑉 = 𝐹(𝑈), there exists (𝑥′, 𝑦′) ∈ 𝑈  such that 𝐹(𝑥′, 𝑦′) =
(𝑥′, 𝑓(𝑥′, 𝑦′)) = (𝑥, 0). So 𝑥 = 𝑥′ and 𝑓(𝑥, 𝑦′) = 0.

Suppose 𝑦1, 𝑦2 ∈ ℝ𝑀  are such that (𝑥, 𝑦1), (𝑥, 𝑦2) ∈ 𝑈  and 𝑓(𝑥, 𝑦1) = 𝑓(𝑥, 𝑦2) = 0.
It follows that

𝐹(𝑥, 𝑦1) = (𝑥, 0𝑀) = 𝐹(𝑥, 𝑦2) ⟹ 𝑦1 = 𝑦2

because 𝐹  is injective on 𝑈 .

b) Next we compute (𝐷𝑔)(𝑥0). Consider 𝜙 : 𝑊 → ℝ𝑁+𝑀 , 𝜙(𝑥) = (𝑥, 𝑔(𝑥)). Then 𝜙 ∈
𝐶1(𝑊, ℝ𝑁+𝑀), 𝜙(𝑥0) = (𝑥0, 𝑦0). Also, for all 𝑥 ∈ 𝑊  and ℎ ∈ ℝ𝑁 , (𝐷𝜙)(𝑥)ℎ =
(ℎ, (𝐷𝑔)(𝑥)ℎ). In terms of the Jacobian matrix of 𝜙 at 𝑥,

𝐽𝜙(𝑥) = [
𝐼𝑁

𝐽𝑔(𝑥)].

Now 𝑓(𝜙(𝑥)) = 0 for all 𝑥 ∈ 𝑊 . By the chain rule we get

(𝐷𝑓)(𝜙(𝑥))(𝐷𝜙)(𝑥) = 0, ∀𝑥 ∈ 𝑊.

Thus for 𝑥 = 𝑥0 and ℎ ∈ ℝ𝑁 , (𝐷𝑓)(𝑥0, 𝑦0)(𝐷𝜙)(𝑥0) = 0 and

(𝐷𝑓)(𝑥0, 𝑦0)(𝐷𝜙)(𝑥0)ℎ = 0
⟹ (𝐷𝑓)(𝑥0, 𝑦0), (ℎ, (𝐷𝑔)(𝑥0)ℎ) = 0
⟹ 𝐴𝑥ℎ + 𝐴𝑦(𝐷𝑔)(𝑥0)ℎ = 0

since 𝐴 = (𝐷𝑓)(𝑥0, 𝑦0). This yields

(𝐷𝑔)(𝑥0)ℎ = −𝐴−1
𝑦 𝐴𝑥ℎ

because 𝐴𝑦 is invertible. Hence (𝐷𝑔)(𝑥0) = −𝐴−1
𝑦 𝐴𝑥 as needed.

□
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Remark 4.7 :  Above we only need 𝐴𝑦 to be invertible to get (𝐷𝑔)(𝑥0) = −𝐴−1
𝑦 𝐴𝑥. Since

the set of linear transformations is open, we can assume that 𝜕𝑓
𝜕𝑦 (𝑥, 𝑦) is invertible for

all (𝑥, 𝑦) ∈ 𝑈  and hence

(𝐷𝑔)(𝑥) = −(
𝜕𝑓
𝜕𝑦

)
−1 𝜕𝑓

𝜕𝑥

for all 𝑥 ∈ 𝑊 .

Example :  Consider the system of equations

2𝑒𝑦1 + 𝑦2𝑥1 − 4𝑥2 + 3 = 0
𝑦2 cos 𝑦1 − 6𝑦1 + 2𝑥1 − 𝑥3 = 0.

There are 2 equations with 5 variables, so 𝑁 + 𝑀 = 5 and 𝑀 = 2.

Then (3, 2, 7, 0, 1) is a solution. Can we describe the solutions near (3, 2, 7, 0, 1) by
(𝑥, 𝑔(𝑥)), 𝑔 : 𝑊 → ℝ2, 𝑊 ⊂ ℝ3?

Let 𝑓 : ℝ5 → ℝ2, 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2) = (𝑓1(𝑥, 𝑦), 𝑓2(𝑥, 𝑦)),

𝑓1(𝑥, 𝑦) = 2𝑒𝑦1 + 𝑦2𝑥1 − 4𝑥2 + 3,
𝑓2(𝑥, 𝑦) = 𝑦2 cos 𝑦1 − 6𝑦1 + 2𝑥1 − 𝑥3.

We have 𝑓 ∈ 𝐶1(ℝ5, ℝ2), and

𝐽𝑓(𝑥, 𝑦) = [
𝑦2
2

−4
0

0
−1

2𝑒𝑦1

−𝑦2 sin 𝑦1 − 6
𝑥1

cos 𝑦1
].

At (3, 2, 7, 0, 1),

𝐽𝑓(3, 2, 7, 0, 1) = [1
2

−4
0

0
−1

2
−6

3
1]

so

𝐴𝑥 = [1
2

−4
0

0
−1] and 𝐴𝑦 = [ 2

−6
3
1].

Note det 𝐴𝑦 = 2 + 18 = 20 ≠ 0 so 𝐴𝑦 is invertible. Then by the implicit function
theorem (Theorem 4.6), there exists an open neighbourhood 𝑊 ⊂ ℝ3 of (3, 2, 7) and
𝑔 : 𝑊 → ℝ2 continuously differentiable, with 𝑔(3, 2, 7) = (0, 1). Also, 𝑓(𝑥, 𝑔(𝑥)) = 0
for all 𝑥 ∈ 𝑊 .

We have (𝐷𝑔)(3, 2, 7) = −𝐴−1
𝑦 𝐴𝑥,

𝐴−1
𝑦 =

1
20

[1
6

−3
2 ].

Thus

(𝐷𝑔)(3, 2, 7) =
⎣
⎢⎡

1
4

−1
2

1
5
6
5

− 3
20

1
10 ⎦

⎥⎤.

This also gives the partial derivatives of 𝑔 at (3, 2, 7).
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Integration in ℝ𝑁

Recall :  Suppose 𝑓 : [𝑎, 𝑏] → ℝ, 𝑓 ≥ 0 is Riemann integrable. Then ∫𝑏
𝑎

𝑓d𝑥 represents
the area under the graph of 𝑓 .

∫ 𝑓d𝑥 is defined as the limit of Riemann sums, so that

∫ 𝑓d𝑥 ≈ ∑
𝑛

𝑖=1
𝑓(𝑥∗

𝑖 )(𝑥𝑖 − 𝑥𝑖−1)

where 𝑥∗
𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖].

Let 𝐼 = [𝑎, 𝑏] × [𝑐, 𝑑]. Suppose 𝑓 : 𝐼 → ℝ, 𝑓(𝑥) = ℎ, ℎ ≥ 0. Then we expect ∫ 𝑓  to be the
“volume” of 𝑓  under the graph of 𝑓  so that ∫ 𝑓 = ℎ(𝑏 − 𝑎)(𝑑 − 𝑐).

We wish to define the Riemann integral of 𝑓 : 𝐴 → ℝ, 𝐴 ⊆ ℝ2, 𝑓 ≥ 0 via a limit process.

We start by considering functions defined on rectangle 𝐼 = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × ⋯ ×
[𝑎𝑁 , 𝑏𝑁 ] ⊂ ℝ𝑁 .

Definition 5.1 :
a) We define the volume of 𝐼  (also called the content of 𝐼) by

𝜇(𝐼) = vol(𝐼) = ∏
𝑁

𝑖=1
(𝑏𝑖 − 𝑎𝑖).

b) For each 𝑗 = 1, …, 𝑁 , let 𝑎𝑗 = 𝑡𝑗,0 < 𝑡𝑗,1 < ⋯ < 𝑡𝑗,𝑛𝑗
= 𝑏𝑗 be a partition of the

closed interval [𝑎𝑗, 𝑏𝑗]. Let 𝑃𝑗 = {𝑡𝑗,𝑖 | 𝑖 = 0, …, 𝑛𝑗}. Then the Cartesian product

𝑃 = 𝑃1 × ⋯ × 𝑃𝑁

is called a partition of 𝐼 .

A partition 𝑃  of 𝐼  gives rise to sub-division of 𝐼  into 𝑛1𝑛2⋯𝑛𝑁  subrectangle, which
are called the rectangles corresponding to 𝑃 . So for each 𝑗 and 1 ≤ 𝑘𝑗 ≤ 𝑁 , we have
a subrectangle

𝐼(𝑘1,𝑘2,…,𝑘𝑁) = [𝑡1,𝑘1−1, 𝑡1,𝑘1
] × [𝑡2,𝑘2−1, 𝑡2,𝑘2

] × ⋯ × [𝑡𝑁,𝑘𝑁−1, 𝑡𝑁,𝑘𝑁
].

For example, suppose 𝑁 = 2, 𝑛1 = 4, 𝑛2 = 3. Then we have:

Definition 5.2 :  Let 𝐼 = [𝑎1, 𝑏1] × ⋯ × [𝑎𝑁 , 𝑏𝑁 ] ⊂ ℝ𝑁  be a rectangle and 𝑓 : 𝐼 → ℝ𝑀

be a function. Let 𝑃  be a partition of 𝐼 . For each rectangle 𝐼𝛼 in the subdivision of 𝐼
corresponding to 𝑃  choose 𝑥𝛼 ∈ 𝐼𝛼. Then the sum

𝑆(𝑓, 𝑃 ) = ∑
𝛼∈𝑃

𝑓(𝑥𝛼)𝜇(𝐼𝛼)

is called a Riemann sum of 𝑓  corresponding to 𝑃 .

Notice that 𝑆(𝑓, 𝑃 ) depends on the partition 𝑃  and also on the choice of points 𝑥𝛼 ∈
𝐼𝛼.

Note (Bryan) :  Each 𝛼 can be written as 𝛼 = (𝑘1, …, 𝑘𝑁), where 1 ≤ 𝑘𝑗 ≤ 𝑛𝑗 for 1 ≤
𝑗 ≤ 𝑁 .

Definition 5.3 :  Let 𝑃 = 𝑃1 × ⋯ × 𝑃𝑁  be a partition of 𝐼 . We say that a partition
𝑄 = 𝑄1 × ⋯ × 𝑄𝑁  is a refinement of 𝑃  if 𝑃𝑗 ⊂ 𝑄𝑗 for all 𝑗 = 1, …, 𝑁 .

Remark 5.4 :
a) Suppose 𝑃  is a partition of 𝐼 . Then

𝐼 = ⋃
𝛼∈𝑃

𝐼𝛼 and 𝜇(𝐼) = ∑
𝛼∈𝑃

𝜇(𝐼𝛼).

(The proof is by induction on 𝑁 .) This is because the rectangles 𝐼𝛼 overlap at most
along their boundaries. So if 𝑄 is a refinement of 𝑃 , then for each 𝛼 ∈ 𝑃 ,

𝐼𝛼 = ⋃
𝛽∈𝑄

𝐽𝛽⊂𝐼𝛼

𝐽𝛽 ⟹ 𝜇(𝐼𝛼) = ∑
𝛽∈𝑄

𝐽𝛽⊂𝐼𝛼

𝜇(𝐽𝛽).

b) Suppose 𝑃  and 𝑄 are partitions of 𝐼 . Then there is always a common refinement 𝑅
of 𝑃  and 𝑄. For example, take 𝑅 = 𝑅1 × ⋯ × 𝑅𝑁  where 𝑅𝑗 ≔ 𝑃𝑗 ∪ 𝑄𝑗, 1 ≤ 𝑗 ≤
𝑁 .

Definition 5.5 :  Let 𝐼 ⊂ ℝ𝑁  be a rectangle and 𝑓 : 𝐼 → ℝ𝑀  be a function. Suppose
that there exists 𝑦 ∈ ℝ𝑀  such that for every 𝜀 > 0 there exists a partition 𝑃𝜀 of 𝐼  such
that for each refinement 𝑃  of 𝑃𝜀 and all Riemann sums 𝑆(𝑓, 𝑃 ) corresponding to 𝑃  we
have ‖𝑆(𝑓, 𝑃 ) − 𝑦‖ < 𝜀. Then we say that 𝑓  is Riemann integrable and 𝑦 is the Riemann
integral of 𝑓 .

Notation :

𝑦 = ∫
𝐼

𝑓, ∫
𝐼

𝑓d𝜇, ∫
𝐼

𝑓(𝑥1, …, 𝑥𝑁)d𝜇(𝑥1, …, 𝑥𝑁)

Proposition 5.6 :  Suppose 𝑓 : 𝐼 → ℝ𝑀  is Riemann integrable. Then ∫
𝐼
𝑓  is unique.

Proof :  exercise (follows from uniqueness of the limit). □

Theorem 5.7 (Cauchy criterion for Riemann integrability) :  Let 𝐼 ⊂ ℝ𝑁  be a rectangle
and 𝑓 : 𝐼 → ℝ𝑀 . Then the following are equivalent:
1. 𝑓  is Riemann integrable.
2. For every 𝜀 > 0, there exists a partition 𝑃𝜀 such that for all refinements 𝑃  and 𝑄 of

𝑃𝜀 and all Riemann sums 𝑆(𝑓, 𝑃 ) and 𝑆(𝑓, 𝑄) corresponding to 𝑃  and 𝑄
respectively we have

‖𝑆(𝑓, 𝑃 ) − 𝑆(𝑓, 𝑄)‖ < 𝜀.

Proof :
1. ⟹ 2. Given 𝜀 > 0, let 𝑃𝜀 be a partition of 𝐼  such that

‖𝑆(𝑓, 𝑃 ) − ∫
𝐼

𝑓‖ <
𝜀
2

for all refinements 𝑃  of 𝑃𝜀 and Riemann sums 𝑆(𝑓, 𝑃 ). Thus if 𝑃  and 𝑄 are
refinements of 𝑃𝜀 and 𝑆(𝑓, 𝑃 ) and 𝑆(𝑓, 𝑄) are Riemann sums corresponding to 𝑃
and 𝑄 respectively, we have

‖𝑆(𝑓, 𝑃 ) − 𝑆(𝑓, 𝑄)‖ <
𝜀
2

+
𝜀
2

= 𝜀.

2. ⟹ 1. Suppose 2. holds. Then for every 𝜀 = 1
2𝑛  there exists a partition 𝑃𝑛 of 𝐼  such

that

‖𝑆(𝑓, 𝑃 ) − 𝑆(𝑓, 𝑄)‖ <
1
2𝑛 (10)

for all refinements 𝑃  and 𝑄 of 𝑃𝑛, and all Riemann sums 𝑆(𝑓, 𝑃 ) and 𝑆(𝑓, 𝑄). By
taking common refinements if necessary, we may assume that 𝑃𝑛+1 is a refinement
of 𝑃𝑛 and in particular

‖𝑆(𝑓, 𝑃𝑛+1) − 𝑆(𝑓, 𝑃𝑛)‖ <
1
2𝑛

for all Riemann sums corresponding to 𝑃𝑛 and 𝑃𝑛+1 respectively. For each 𝑛 let 𝑦𝑛
be a Riemann sum corresponding to the subdivision of 𝐼  given by 𝑃𝑛. Thus ‖𝑦𝑛+1 −
𝑦𝑛‖ < 1

2𝑛  for all 𝑛. It follows that (𝑦𝑛) is a Cauchy sequence. Set 𝑦 ≔ lim𝑛→∞ 𝑦𝑛.
We will show that 𝑦 = ∫

𝐼
𝑓 . Let 𝜀 > 0 be given. Choose 𝑘 such that ‖𝑦 − 𝑦𝑛‖ < 𝜀

2  for
all 𝑛 ≥ 𝑘. Let 𝑛 ≥ 𝑘 such that 1

2𝑛 < 𝜀
2 . Set 𝑃𝜀 ≔ 𝑃𝑛. Let 𝑃  be a refinement of 𝑃𝑛 and

𝑆(𝑓, 𝑃 ) be a Riemann sum. By (10), ‖𝑆(𝑓, 𝑃 ) − 𝑦𝑛‖ < 1
2𝑛 < 𝜀

2 . Thus

‖𝑆(𝑓, 𝑃 ) − 𝑦‖ < ‖𝑆(𝑓, 𝑃 ) − 𝑦𝑛‖ + ‖𝑦𝑛 − 𝑦‖ <
𝜀
2

+
𝜀
2

= 𝜀

giving that 𝑦 = ∫
𝐼
𝑓 , and 𝑓  is Riemann integrable.

□
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Remark :  Let 𝐼 ⊂ ℝ𝑁  be a rectangle and 𝑓 : 𝐼 → ℝ𝑀  be a function. Then 𝑓  is Riemann
integrable if and only if each component 𝑓𝑗 : 𝐼 → ℝ, 𝑗 = 1, …, 𝑀  of 𝑓  is Riemann
integrable (see A5).

Corollary 5.8 :  Let 𝐼 ⊂ ℝ𝑁  be a rectangle and 𝑓 : 𝐼 → ℝ𝑀  be a function. The
following are equivalent:
1. 𝑓  is Riemann integrable.
2. For every 𝜀 > 0, there exists a partition 𝑃𝜀 of 𝐼  such that

‖𝑆1(𝑓, 𝑃𝜀) − 𝑆2(𝑓, 𝑃𝜀)‖ < 𝜀

for all Riemann sums 𝑆1(𝑓, 𝑃𝜀) and 𝑆2(𝑓, 𝑃𝜀) corresponding to 𝑃𝜀.

Proof :
1. ⟹ 2. is by Theorem 5.7.
2. ⟹ 1. Suppose 2. holds. By the preceeding remark, we may assume 𝑀 = 1. Let 𝜀 >

0 be given and let 𝑃𝜀 be a partition of 𝐼  as in 2. Let 𝑃  and 𝑄 be refinements of 𝑃𝜀
and let

𝑆(𝑓, 𝑃 ) = ∑
𝛽∈𝑃

𝑓(𝑥𝛽)𝜇(𝐽𝛽) and 𝑆(𝑓, 𝑄) = ∑
𝛾∈𝑄

𝑓(𝑥𝛾)𝜇(𝐾𝛾)

be Riemann sums associated to 𝑃  and 𝑄 respectively. Then for each 𝛼 ∈ 𝑃𝜀 we have

𝐼𝛼 = ⋃
𝛽∈𝑃

𝐽𝛽⊂𝐼𝛼

𝐽𝛽 = ⋃
𝛾∈𝑄

𝐾𝛾⊂𝐼𝛼

𝐾𝛾

and

𝜇(𝐼𝛼) = ∑
𝛽∈𝑃

𝐽𝛽⊂𝐼𝛼

𝜇(𝐽𝛽) = ∑
𝛾∈𝑄

𝐾𝛾⊂𝐼𝛼

𝜇(𝐾𝛾)

by Remark 5.4.

For each 𝛼 ∈ 𝑃𝜀 let

𝐵𝛼 = {𝑓(𝑥𝛽) | 𝛽 ∈ 𝑃 , 𝐽𝛽 ⊂ 𝐼𝛼} ∪ {𝑓(𝑥𝛾) | 𝛾 ∈ 𝑄, 𝐾𝛾 ⊂ 𝐼𝛼}.

Then 𝐵𝛼 is finite and we let 𝑧𝛼, 𝑤𝛼 ∈ 𝐼𝛼 such that

𝑓(𝑧𝛼) = max 𝐵𝛼, 𝑓(𝑤𝛼) = min 𝐵𝛼.

Then

𝑓(𝑤𝛼) ≤ 𝑓(𝑥𝛽) ≤ 𝑓(𝑧𝛼), ∀𝛽 ∈ 𝑃 , 𝐽𝛽 ⊂ 𝐼𝛼

𝑓(𝑤𝛼) ≤ 𝑓(𝑥𝛾) ≤ 𝑓(𝑧𝛼), ∀𝛾 ∈ 𝑃 , 𝐾𝛾 ⊂ 𝐼𝛼.

We have

𝑆(𝑓, 𝑃 ) − 𝑆(𝑓, 𝑄) = ∑
𝛽∈𝑃

𝑓(𝑥𝛽)𝜇(𝐽𝛽) − ∑(𝛾 ∈ 𝑄)𝑓(𝑥𝛾)𝜇(𝐾𝛾)

= ∑
𝛼∈𝑃𝜀

⎝
⎜⎜
⎜⎜
⎜⎛

∑
𝛽∈𝑃

𝐽𝛽⊂𝐼𝛼

𝑓(𝑥𝛽)𝜇(𝐽𝛽) − ∑
𝛾∈𝑄

𝐾𝛾⊂𝐼𝛼

𝑓(𝑥𝛾)𝜇(𝐾𝛾)

⎠
⎟⎟
⎟⎟
⎟⎞

≤ ∑
𝛼∈𝑃𝜀

∑
𝛽∈𝑃

𝐽𝛽⊂𝐼𝛼

𝑓(𝑧𝛼)𝜇(𝐽𝛽) − ∑
𝛼∈𝑃𝜀

∑
𝛾∈𝑄

𝐾𝛾⊂𝐼𝛼

𝑓𝑤𝛼
𝜇(𝐾𝛾)

= ∑
𝛼∈𝑃𝜀

𝑓(𝑧𝛼)𝜇(𝐼𝛼) − ∑
𝛼∈𝑃𝜀

𝑓(𝑤𝛼)𝜇(𝐼𝛼)

= 𝑆1(𝑓, 𝑃𝜀) − 𝑆2(𝑓, 𝑃𝜀)
< 𝜀.

Similarly,

𝑆(𝑓, 𝑃 ) − 𝑆(𝑓, 𝑄) ≤ 𝑆1(𝑓, 𝑃𝜀) − 𝑆2(𝑓, 𝑃𝜀) > −𝜀
⟹ |𝑆(𝑓, 𝑃 ) − 𝑆(𝑓, 𝑄)| < 𝜀.

by Theorem 5.7 (2. ⟹ 1.), 𝑓  is Riemann integrable.

□

Theorem 5.9 :  Let 𝐼 ⊂ ℝ𝑁  be a rectangle and 𝑓 : 𝐼 → ℝ𝑀  be continuous. Then 𝑓  is
Riemann integrable.

Proof :  Since 𝐼  is compact and 𝑓  is continuous, then 𝑓  is uniformly continuous on 𝐼 .
Given 𝜀 > 0, let 𝛿 > 0 be such that

‖𝑓(𝑥) − 𝑓(𝑦)‖ <
𝜀

𝜇(𝐼)

for all 𝑥, 𝑦 ∈ 𝐼, ‖𝑥 − 𝑦‖ < 𝛿. Choose a partition 𝑃𝜀 of 𝐼  such that 𝑥, 𝑦 ∈ 𝐼𝛼, ‖𝑥 − 𝑦‖ < 𝛿
for all 𝛼 ∈ 𝑃𝜀.

Let

𝑆1(𝑓, 𝑃𝜀) = ∑
𝛼∈𝑃𝜀

𝑓(𝑥𝛼)𝜇(𝐼𝛼), 𝑆2(𝑓, 𝑃𝜀) = ∑
𝛼∈𝑃𝜀

𝑓(𝑦𝛼)𝜇(𝐼𝛼)

be Riemann sums corresponding to 𝑃𝜀. Then

‖𝑆1(𝑓, 𝑃𝜀) − 𝑆2(𝑓, 𝑃𝜀)‖ = ‖ ∑
𝛼∈𝑃𝜀

(𝑓(𝑥𝛼) − 𝑓(𝑦𝛼))𝜇(𝐼𝛼)‖

≤ ∑
𝛼∈𝑃𝜀

‖𝑓(𝑥𝛼) − 𝑓(𝑦𝛼)‖𝜇(𝐼𝛼)

< ∑
𝛼∈𝑃𝜀

𝜀
𝜇(𝐼)

𝜇(𝐼𝛼)

= 𝜀

since 𝑥𝛼, 𝑦𝛼 ∈ 𝐼𝛼 ⟹ ‖𝑥𝛼 − 𝑦𝛼‖ < 𝛿. By Corollary 5.8, 𝑓  is Riemann integrable. □
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Content and measure zero sets

Definition 5.10 :  We say that a set 𝐴 ⊂ ℝ𝑁  has content zero, write 𝜇(𝐴) = 0 if for
every 𝜀 > 0 the rectangles 𝐼1, 𝐼2, …, 𝐼𝑛 (may overlap, finitely many) with

𝐴 ⊂ ⋃
𝑛

𝑗=1
𝐼𝑗 and ∑

𝑛

𝑗=1
𝜇(𝐼𝑗) < 𝜀.

Note :  If 𝐴 ⊂ 𝐵 and 𝐵 has content zero, then 𝐴 has content zero.

Example :
a) Finite sets have content zero.
b) If 𝐴1, 𝐴2, …, 𝐴𝑚 have content zero, then 𝐴 = ⋃𝑚

𝑖=1 𝐴𝑖 has content zero.
c) If 𝐼 ⊂ ℝ𝑁  is a rectangle, then 𝜕𝐼  has content zero. This is because 𝜕𝐼  is a finite

union of sets of form

[𝑎1, 𝑏2] × ⋯ × [𝑎𝑖−1, 𝑏𝑖−1] × {𝑐𝑖} × [𝑎𝑖+1, 𝑏𝑖+1] × ⋯ × [𝑎𝑁 , 𝑏𝑁 ]

where 𝑐𝑖 ∈ [𝑎𝑖, 𝑏𝑖].

Proposition 5.11 :  Suppose 𝐾 ⊂ ℝ𝑁  is compact and 𝑓 : 𝐾 → ℝ is continuous, then

graph 𝑓 = {(𝑥, 𝑓(𝑥)) | 𝑥 ∈ 𝐾} ⊂ ℝ𝑁+1

has content zero.

Example :
a) ℤ, ℚ do not have content zero.
b) ℚ ∩ [0, 1] does not have content zero.

Definition 5.12 :  Let 𝐴 ⊂ ℝ𝑁 . We say that 𝐴 has measure zero if for every 𝜀 > 0 there
are countably (possibly infinite) rectangles 𝐼1, 𝐼2, … in ℝ𝑁  such that

𝐴 ⊂ ⋃
∞

𝑗=1
𝐼𝑗 and ∑

∞

𝑗=1
𝜇(𝐼𝑗) < 𝜀.

Note :  A set {𝐼𝜆}𝜆∈Λ is countable if there exists a surjective function 𝑔 : ℕ → Λ.

Note :
a) If 𝐴 ⊂ 𝐵 and 𝐵 has measure zero then 𝐴 has measure zero.
b) If 𝐴 has content zero then 𝐴 has measure zero.

Proposition 5.13 :  Suppose 𝐴1, 𝐴2, … are subsets of ℝ𝑁  with measure zero. Then
𝐴 = ⋃∞

𝑗=1 𝐴𝑗 has measure zero.

Proof :  Let 𝜀 > 0. For each 𝑖 = 1, 2, … let 𝐼𝑖,1, 𝐼𝑖,2, … be a countable collection of
rectangles such that

𝐴𝑖 ⊂ ⋃
∞

𝑗=1
𝐼𝑖,𝑗 and ∑

∞

𝑗=1
𝜇(𝐼𝑖,𝑗) <

𝜀
2𝑖

then

𝐴 ⋃
∞

𝑖=1
(⋃

∞

𝑗=1
𝐼𝑖,𝑗) and ∑

∞

𝑖=1
∑
∞

𝑗=1
𝐼𝑖,𝑗 < ∑

∞

𝑖=1

𝜀
2𝑖 =

𝜀
2

< 𝜀.

Since ℕ × ℕ is countable, we get 𝐴 has measure zero. □

Example :
a) Countable sets have measure zero (e.g. ℚ, ℚ ∩ [0, 1], ℤ).
b) [0, 1] ∖ ℚ does not have measure zero.

Theorem 5.14 :  Suppose 𝐾 ⊂ ℝ𝑁  compact has measure zero. Then 𝐾 has content
zero.

Proof :  Let 𝜀 > 0 and let 𝐼1, 𝐼2, … be rectangles with

𝐾 ⊂ ⋃
∞

𝑗=1
𝐼𝑗 and ∑

∞

𝑗=1
𝜇(𝐼𝑗) <

𝜀
2
.

For each 𝑗 choose 𝐼′
𝑗  a rectangle with (𝐼′

𝑗)° ⊃ 𝐼𝑗 and 𝜇(𝐼′
𝑗) < 𝜇(𝐼𝑗) + 𝜀

2𝑗+1 . By
compactness, there are rectangles 𝐼′

𝑗1
, …, 𝐼′

𝑗𝑛
 such that

𝐾 ⊂ ⋃
𝑛

𝑖=1
(𝐼′

𝑗𝑖
)° ⊂ ⋃

𝑛

𝑖=1
𝐼′
𝑗𝑖

also

∑
𝑛

𝑖=1
𝜇(𝐼′

𝑗𝑖
) ≤ ∑

∞

𝑗=1
𝜇(𝐼′

𝑗) ≤ ∑
∞

𝑗=1
(𝜇(𝐼𝑗) +

𝜀
2𝑗+1 ) < 𝜀.

□

Definition 5.15 :

a) Let ⌀ ≠ 𝐷 ⊂ ℝ𝑁  be bounded and let 𝐼 ⊂ ℝ𝑁  be a rectangle containing 𝐷. We say
that a function 𝑓 : 𝐷 → ℝ𝑀  is Riemann integrable on 𝐷 if ̃𝑓 : 𝐼 → ℝ𝑀  given by

̃𝑓(𝑥) = {𝑓(𝑥) if 𝑥 ∈ 𝐷
0 otherwise

is Riemann integrable, in which case we can define the integral of 𝑓  on 𝐷 by
∫

𝐷
𝑓 ≔ ∫

𝐼
̃𝑓 .

Exercise :  Show that ∫
𝐷

𝑓  is well defined. That is, it does not depend on the
rectangle 𝐼 ⊃ 𝐷.

b) Let ⌀ ≠ 𝐷 ⊂ ℝ𝑁  be bounded. We say that 𝐷 has content if the characteristic
function on 𝐷 is integrable, where 𝜒𝐷 : ℝ𝑁 → ℝ,

𝜒𝐷(𝑥) = {1 if 𝑥 ∈ 𝐷
0 otherwise

.

We define the content of 𝐷 (the volume) by

𝜇(𝐷) = ∫
𝐷

𝜒𝐷 = ∫
𝐷

1.

Note :  If 𝐷 = 𝐼  is a rectangle, this coincides with the volume of 𝐼 .

Theorem 5.16 (Lebesgue) :  Let 𝐼 ⊂ ℝ𝑁  be a rectangle and let 𝑓 : 𝐼 → ℝ𝑀  be bounded.
Then 𝑓  is Riemann integrable if and only if the set

𝐵𝑓 = {𝑥 ∈ 𝐼 | 𝑓 is not continuous at 𝑥}

has measure zero.

Proof :  Notice that we can assume 𝑀 = 1 because 𝐵𝑓 = ⋃𝑀
𝑗=1 𝐵𝑓𝑗

 where

𝐵𝑓𝑗
= {𝑥 ∈ 𝐼 | 𝑓𝑗 is not continuous at 𝑥},

𝑓𝑗 is a component of 𝑓 .

(⟸) We define for 𝑥 ∈ 𝐼  the oscilation of 𝑓  at 𝑥 by

𝑜(𝑓, 𝑥) = lim
𝛿→0

[𝑀(𝑥, 𝑓, 𝛿) − 𝑚(𝑥, 𝑓, 𝛿)]

where

𝑀(𝑥, 𝑓, 𝛿) = sup{𝑓(𝑦) | 𝑦 ∈ 𝐵𝛿(𝑥)}
𝑚(𝑥, 𝑓, 𝛿) = inf{𝑓(𝑦) | 𝑦 ∈ 𝐵𝛿(𝑥)}.

The limit above exists becaue the function 𝛿 ↦ 𝑀(𝑥, 𝑓, 𝛿) − 𝑚(𝑥, 𝑓, 𝛿) is decreasing.
Notice also 𝑜(𝑥, 𝑓) ≥ 0.

Claim 1: 𝑓  is continuous at 𝑥 if and only if 𝑜(𝑓, 𝑥) = 0.

Claim 2: for every 𝜀 > 0 the set

𝐵𝜀 = {𝑥 ∈ 𝐼 | 𝑜(𝑓, 𝑥) ≥ 𝜀}

is closed. In particular, 𝐵𝜀 is compact.

Proof of Claim 2 :  We will prove that 𝐵𝑐
𝜀 ∩ 𝐼  is relatively open in 𝐼 . Let 𝑥 ∈ 𝐼  with

𝑜(𝑓, 𝑥) < 𝜀. Let 𝛿 > 0 be such that 𝑀(𝑥, 𝑓, 𝛿) − 𝑚(𝑥, 𝑓, 𝛿) < 𝜀. Let 𝑦 ∈ 𝐵𝛿(𝑥)
and take 𝛿𝑦 > 0 such that 𝐵𝛿𝑦

(𝑥) ⊂ 𝐵𝛿(𝑥). Then

𝑀(𝑦, 𝑓, 𝛿𝑦) − 𝑚(𝑦, 𝑓, 𝛿𝑦) ≤ 𝑀(𝑥, 𝑓, 𝛿) − 𝑚(𝑥, 𝑓, 𝛿) < 𝜀

giving that 𝑜(𝑓, 𝑥) < 𝜀. Thus 𝐵𝜀 is relatively closed in 𝐼 , giving that 𝐵𝜀 is closed.
□

Notice that 𝐵𝜀 ⊂ 𝐵𝑓  by Claim 1. Hence 𝐵𝜀 has measure zero, and also content zero by
Theorem 5.14. Let 𝜀 > 0 be give, let 𝑈1, …, 𝑈𝑛 be rectangles such that

𝐵𝜀 ⊂ ∪𝑛
𝑗=1 𝑈𝑗° and ∑

𝑛

𝑗=1
𝜇(𝑈𝑗) < 𝜀.

Let 𝑃 ′
𝜀  be a partition of 𝐼  such that for each 𝛼 ∈ 𝑃 ′

𝜀 , the rectangles 𝐼𝛼 has one of the
following properties:
1. 𝐼𝛼 ⊂ 𝑈𝑗 for some 𝑗 = 1, …, 𝑛, or
2. 𝐼𝛼 ∩ 𝐵𝜀 = ⌀. This can be done by considering the rectangles 𝑈𝑗 ∩ 𝐼  and

because if

𝐼𝛼 ∩ (⋃
𝑛

𝑗=1
(𝑈𝑗 ∩ 𝐼)°) = ⌀

then 𝐼𝛼 ∩ 𝐵𝜀 = ⌀.

Let 𝑀 ≥ 0 such that |𝑓(𝑥)| ≤ 𝑀  for all 𝑥 ∈ 𝐼 . Then |𝑓(𝑥𝛼) − 𝑓(𝑦𝛼)| ≤ 2𝑀  for all
𝑥𝛼, 𝑦𝛼 ∈ 𝐼𝛼. Now we get

|
|
|
|
|

∑
𝐼𝛼⊂𝑈𝑗

for some 𝑗

(𝑓(𝑥𝛼) − 𝑓(𝑦𝛼))𝜇(𝐼𝛼)

|
|
|
|
|
≤ ∑

𝐼𝛼⊂𝑈𝑗
for some 𝑗

|𝑓(𝑥𝛼) − 𝑓(𝑦𝛼)|𝜇(𝐼𝛼)

≤ 2𝑀 ∑
𝛼∈𝑃 ′

𝜀
𝐼𝛼⊂𝑈𝑗

for some 𝑗

𝜇(𝐼𝛼)

≤ 2𝑀 ∑
𝑛

𝑗=1
𝜇(𝑈𝑗)

= 2𝑀𝜀.

Claim 3: If 𝛼 ∈ 𝑃 ′
𝜀  and 𝐼𝛼 ∩ 𝐵𝜀 = ⌀ then there exists a partition 𝑃𝛼 of 𝐼𝛼 such that

|𝑓(𝑥𝛽) − 𝑓(𝑦𝛽)|, ∀𝑥𝛽, 𝑦𝛽 ∈ 𝐽𝛼,𝛽

where 𝐽𝛼,𝛽 is a subrectangle in the subdivision corresponding to 𝑃𝛼.

Proof of Claim 3 :  Since 𝐼𝛼 ∩ 𝐵𝜀 = ⌀, we have 𝑜(𝑓, 𝑥) < 𝜀 for all 𝑥 ∈ 𝐼𝛼. For each
𝑥 ∈ 𝐼𝛼, let 𝛿𝑥 > 0 be such that

|𝑓(𝑦) − 𝑓(𝑧)| < 𝜀, ∀𝑦, 𝑧 ∈ 𝐵𝛿𝑥
(𝑥).

Then 𝐼𝛼 ⊂ ⋃𝑥∈𝐼𝛼
𝐵𝛿𝑥

2
(𝑥). Let {𝑥1, …, 𝑥𝑙} be such that

𝐼𝛼 ⊂ ⋃
𝑙

𝑖=1
𝐵𝛿𝑥𝑖

2
(𝑥𝑖).

Take 𝛿 = min{
𝛿𝑥𝑖
2 | 𝑖 = 1, …, 𝑙}. Let 𝑃𝛼 be a partition of 𝐼𝛼 such that 𝑥, 𝑦 belong

to the subrectangle, we have ‖𝑥 − 𝑦‖ < 𝛿. It follows that if 𝑥𝛽, 𝑦𝛽 ∈ 𝐽𝛼,𝛽 then
taking 𝑖 such that 𝑥𝛽 ∈ 𝐵𝛿𝑥𝑖

2
(𝑥𝑖), we have 𝑦𝛽 ∈ 𝐵𝛿𝑥𝑖

(𝑥𝑖). This gives |𝑓(𝑥𝛽) −
𝑓(𝑦𝛽)| < 2𝜀. □

It follows by Claim 3 that we can find a refinement 𝑃𝜀 of 𝑃 ′
𝜀  with the properties above,

and with the additional property that |𝑓(𝑥𝛼) − 𝑓(𝑦𝛼)| < 2𝜀 whenever 𝛼 ∈ 𝑃𝜀 and
𝐼𝛼 ∩ 𝐵𝜀 = ⌀. Let 𝑆1(𝑓, 𝑃𝜀) and 𝑆2(𝑓, 𝑃𝜀) be Riemann sums that correspond to 𝑃𝜀.
Then

| ∑
𝛼∈𝑃𝜀

(𝑓(𝑥𝛼) − 𝑓(𝑦𝛼))𝜇(𝐼𝛼)|

≤ ∑
𝛼∈𝑃𝜀
𝐼𝛼⊂𝑈𝑗

for some 𝑗

|𝑓(𝑥𝛼) − 𝑓(𝑦𝛼)|𝜇(𝐼𝛼) + ∑
𝛼∈𝑃𝜀

𝐼𝛼∩𝐵𝜀=⌀

|𝑓(𝑥𝛼) − 𝑓(𝑦𝛼)|𝜇(𝐼𝛼)

≤ 2𝑀𝜀 + 2𝜀𝜇(𝐼).

By Corollary 5.8, 𝑓  is Riemann integrable.

(⟹) Suppose 𝑓  is Riemann integrable. For each 𝑛, let

𝐵 1
𝑛

= {𝑥 ∈ 𝐼 | 𝑜(𝑓, 𝑥) ≥
1
𝑛

}.

By Claim 1, 𝐵𝑓 = ⋃∞
𝑛=1 𝐵 1

𝑛
. Thus it suffices to show that each 𝐵 1

𝑛
 has measure zero (in

fact, content zero). Fix 𝑛 and let 𝜀 > 0. Let 𝑃𝜀 be a partition of 𝐼  such that

|𝑆1(𝑓, 𝑃𝜀) − 𝑆2(𝑓, 𝑃𝜀)| <
𝜀
𝑛

for all Riemann sums 𝑆1(𝑓, 𝑃𝜀) and 𝑆2(𝑓, 𝑃𝜀). Write 𝐵 1
𝑛

= 𝐶1 ∩ 𝐶2 where

𝐶1 = {𝑥 ∈ 𝐵 1
𝑛

| 𝑥 ∈ 𝜕𝐼𝛼 for some 𝛼}

𝐶2 = {𝑥 ∈ 𝐵 1
𝑛

| 𝑥 ∈ 𝐼𝛼° for some 𝛼}.

Then 𝐶1 has content zero because each 𝐼𝛼 does. Let 𝑆 = {𝐼𝛼 | 𝐼𝛼° ∩ 𝐶2 = ⌀}. Thus
𝐶2 ⊂ ⋃𝐼𝛼∈𝑆 𝐼𝛼. Given 𝜀′ > 0, 𝜀′ < 1

𝑛 , for each 𝐼𝛼 ∈ 𝑆 we can find 𝑥𝛼, 𝑦𝛼 ∈ 𝑆 such
that 𝑓(𝑥𝛼) − 𝑓(𝑦𝛼) > 1

𝑛 − 𝜀′ since 𝐼𝛼° ∩ 𝐶2 ≠ ⌀. It follows that

0 ≤ ∑
𝐼𝛼∈𝑆

(
1
𝑛

− 𝜀′)𝜇(𝐼𝛼) ≤ ∑
𝐼𝛼∈𝑆

(𝑓(𝑥𝛼) − 𝑓(𝑦𝛼))𝜇(𝐼𝛼)

= 𝑆1(𝑓, 𝑃𝜀) − 𝑆2(𝑓, 𝑃𝜀)

<
𝜀
𝑛

.

Since 𝜀′ > 0 was arbitrary, this yields

∑
𝐼𝛼∈𝑆

𝜇(𝐼𝛼)
2

≤
𝜀
2

⟹ ∑
𝐼𝛼∈𝑆

𝜇(𝐼𝛼) ≤ 𝜀.

So 𝐶2 has content zero as needed.
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Corollary 5.17 :  Let ⌀ ≠ 𝐷 ⊂ ℝ𝑁  be bounded. The following are equivalent:
1. 𝐷 has content,
2. 𝜕𝐷 has content zero.

Corollary 5.18 :  Suppose ⌀ ≠ 𝐷 ⊂ ℝ𝑁  is bounded and 𝜕𝐷 has content zero. If 𝑓 :
𝐷 → ℝ𝑀  is continuous, then 𝑓  is Riemann integrable.

Corollary 5.19 :  Let 𝑓 : 𝐼 → ℝ𝑀  and suppose that the set of points at which 𝑓  is
discontinuous is countable. Then 𝑓  is Riemann integrable.

Proposition 5.20 (Properties of the Riemann integral) :  Let ⌀ ≠ 𝐷 ⊂ ℝ𝑁  be bounded.
Let 𝑓, 𝑔 : 𝐷 → ℝ𝑀  be Riemann integrable.
1. 𝑓 + 𝜆𝑔 is Riemann integrable, ∫ 𝑓 + 𝜆𝑔 = ∫ 𝑓 + 𝜆 ∫ 𝑔.
2. ‖𝑓‖ : 𝐷 → ℝ, 𝑥 ↦ ‖𝑓(𝑥)‖ is Riemann integrable.
3. If 𝑀 = 1, 𝑓 ≤ 𝑔, then ∫ 𝑓 ≤ ∫ 𝑔.
4. If 𝑀 = 1, 𝐷 has content, and 𝑟 ≤ 𝑓 ≤ 𝑅 then 𝑟𝜇(𝐷) ≤ ∫ 𝑓 ≤ 𝑅𝜇(𝐷).
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Theorem 5.21 (Mean value theorem for integrals) :  Let ⌀ ≠ 𝐷 ⊂ ℝ𝑁  and 𝑓 : 𝐷 → ℝ
continuous on 𝐷. Suppose that 𝐷 is compact, connected and has content. Then there
exists 𝑥0 ∈ 𝐷 such that

∫
𝐷

𝑓 = 𝑓(𝑥0)𝜇(𝐷).

Proof :  Since 𝐷 has content, and 𝑓  is continuous, then 𝑓  is Riemann integrable by
Corollary 5.18. Let 𝑟, 𝑅 ∈ ℝ such that 𝑟 ≤ 𝑓 ≤ 𝑅. By the extreme value theorem
(Theorem 2.12), there are 𝑝, 𝑞 ∈ 𝐷 such that 𝑓(𝑝) = 𝑟, 𝑓(𝑞) = 𝑅. We have

𝑟𝜇(𝐷) ≤ ∫
𝐷

𝑓 ≤ 𝑅𝜇(𝐷).

So if 𝜇(𝐷) = 0, ∫
𝐷

𝑓 = 0 and any 𝑥0 ∈ 𝐷 satisfies ∫
𝐷

𝑓 = 𝑓(𝑥0)𝜇(𝐷). Assume
𝜇(𝐷) ≠ 0 and let 𝜆 ≔

∫
𝐷

𝑓
𝜇(𝐷)  so 𝑓(𝑝) ≤ 𝜆 ≤ 𝑓(𝑞) and since 𝐷 is connected, there exists

by the intermediate value theorem 𝑥0 ∈ 𝐷 such that 𝑓(𝑥0) = 𝜆 =
∫

𝐷
𝑓

𝜇(𝐷) . □

Fubini’s theorem

How do we actually compute ∫
𝐷

𝑓? Suppose 𝐼 = [𝑎, 𝑏] × [𝑐, 𝑑] ⊂ ℝ2 and 𝑓 : 𝐼 → ℝ
continuous, 𝑓 ≥ 0 so that ∫ 𝑓  represents the volume of the graph of 𝑓 .

If 𝑎 = 𝑡0 < ⋯ < 𝑡𝑖−1 < 𝑡𝑖 < ⋯ < 𝑡𝑛 = 𝑏 is a partition of [𝑎, 𝑏] so that 𝑡𝑖 − 𝑡𝑖−1 ≈ 0 for all 𝑖
and

ℎ(𝑥) = ∫
𝑑

𝑐
𝑓(𝑥, 𝑦) d𝑦

is the integral of 𝑓  with respect to 𝑦 over [𝑐, 𝑑].

Thus we expect

∫
𝐼

𝑓 = ∫
𝑏

𝑎
(∫

𝑑

𝑐
𝑓(𝑥, 𝑦) d𝑦) d𝑥 = ∫

𝑑

𝑐
(∫

𝑏

𝑎
𝑓(𝑥, 𝑦) d𝑥) d𝑦.

It could happen in general that for some 𝑥 the function 𝑦 ↦ 𝑓(𝑥, 𝑦) is not Riemann
integrable.

Theorem 5.22 (Fubini) :  Let 𝐼 ⊂ ℝ𝑁  and 𝐽 ⊂ ℝ𝑀  be rectangles and 𝑓 : 𝐼 × 𝐽 → ℝ𝐾

Riemann integrable. Suppose that for each 𝑥 ∈ 𝐼  the function 𝑦 ∈ 𝐽 ↦ 𝑓(𝑥, 𝑦) ∈ ℝ𝐾  is
Riemann integrable and let ℎ(𝑥) = ∫

𝐽
𝑓(𝑥, 𝑦) d𝑦. Then ℎ is integrable and

∫
𝐼
(∫

𝐽
𝑓(𝑥, 𝑦) d𝑦) d𝑥 = ∫

𝐼
ℎ(𝑥) d𝑥 = ∫

𝐼×𝐽
𝑓.

Note :  A similar statement holds if 𝑥 ↦ 𝑓(𝑥, 𝑦) is integrable for each 𝑦 ∈ 𝐽  and we let
𝑔(𝑦) = ∫

𝐼
𝑓(𝑥, 𝑦) d𝑥.

Proof :  We may assume 𝐾 = 1 by A5Q2 and ∫ 𝑓 = (∫ 𝑓1, ∫ 𝑓2, …, ∫ 𝑓𝐾). Let 𝜀 > 0 be
given and let 𝑃𝜀 be a partition of 𝐼 × 𝐽 . Then

|𝑆(𝑓, 𝑃 ) − ∫
𝐼×𝐽

𝑓| <
𝜀
2 (11)

for all refinements 𝑃  of 𝑃𝜀 and all Riemann sums corresponding to 𝑃 . Let 𝑃 𝐼
𝜀  and 𝑃 𝐽

𝜀
be partitions of 𝐼  and 𝐽  respectively so that 𝑃𝜀 = 𝑃 𝐼

𝜀 × 𝑃 𝐽
𝜀 . Let 𝑃 𝐼  and 𝑃 𝐽  be

refinements of 𝑃 𝐼
𝜀  and 𝑃 𝐽

𝜀  respectively, and for each 𝛼 ∈ 𝑃 𝐼  and 𝛽 ∈ 𝑃 𝐽  choose 𝑥𝛼 ∈
𝐼𝛼 and 𝑦𝛽 ∈ 𝐽𝛽. Then (11) yields

| ∑
(𝛼,𝛽)∈𝐼𝛼×𝐽𝛽

𝑓(𝑥𝛼, 𝑦𝛽)𝜇(𝐼𝛼 × 𝐽𝛽) − ∫
𝐼×𝐽

𝑓| <
𝜀
2
.

Then since 𝜇(𝐼𝛼 × 𝐽𝛽) = 𝜇(𝐼𝛼)𝜇(𝐽𝛽), we get

| ∑
𝛼∈𝑃 𝐼⎝

⎜⎛ ∑
𝛽∈𝑃𝐽

𝑓(𝑥𝛼, 𝑦𝛽)𝜇(𝐽𝛽)
⎠
⎟⎞𝜇(𝐼𝛼) = ∫

𝐼×𝐽
| <

𝜀
2
. (12)

Fix 𝑃 𝐼  and 𝑥𝛼 ∈ 𝐼𝛼, let 𝑄𝐽
𝜀  be a refinement of 𝑃 𝐽

𝜀  such that

| ∑
𝛽∈𝑄𝐽

𝜀

𝑓(𝑥𝛼, 𝑦𝛽)𝜇(𝐽𝛽) − ℎ(𝑥𝛼)| <
𝜀

2𝜇(𝐼)

for all 𝛼 ∈ 𝑃 𝐼 . Then combining this with (12) gives

| ∑
𝛼∈𝑃 𝐼⎝

⎜⎛ ∑
𝛽∈𝑄𝐽

𝜀

𝑓(𝑥𝛼, 𝑦𝛽)𝜇(𝐽𝛽)
⎠
⎟⎞𝜇(𝐼𝛼) − ∑

𝛼∈𝑃 𝐼

ℎ(𝑥𝛼)𝜇(𝐼𝛼)|

≤ ∑
𝛼∈𝑃 𝐼

| ∑
𝛽∈𝑄𝐽

𝜀

𝑓(𝑥𝛼, 𝑦𝛽)𝜇(𝐽𝛽)𝜇(𝐼𝛼) − ℎ(𝑥𝛼)𝜇(𝐼𝛼)|

< ∑
𝛼∈𝑃 𝐼

𝜀
2𝜇(𝐼)

𝜇(𝐼𝛼)

=
𝜀
2
.

Thus

| ∑
𝛼∈𝑃 𝐼

ℎ(𝑥𝛼)𝜇(𝐼𝛼) − ∫
𝐼×𝐽

𝑓| < 𝜀.

This implies that ℎ is integrable and

∫ ℎ(𝑥) d𝑥 = ∫
𝐼×𝐽

𝑓.

□

Corollary 5.23 :  Let 𝐼 = [𝑎, 𝑏] × [𝑐, 𝑑] ⊂ ℝ2 and 𝑓 : 𝐼 → ℝ integrable. Suppose that
the functions 𝑦 ↦ 𝑓(𝑥, 𝑦) and 𝑥 ↦ 𝑓(𝑥, 𝑦) are integrable for all 𝑥 ∈ [𝑎, 𝑏] and 𝑦 ∈
[𝑐, 𝑑]. Then

∫
𝑏

𝑎
∫

𝑑

𝑐
𝑓(𝑥, 𝑦) d𝑦 d𝑥 = ∫

𝐼
𝑓 = ∫

𝑑

𝑐
∫

𝑏

𝑎
𝑓(𝑥, 𝑦) d𝑥 d𝑦.

Example 5.24 :  Let 𝐼 = [0, 1] × [0, 1]. Let 𝑓(𝑥, 𝑦) = 𝑦3𝑒𝑥𝑦2 . Then

∫
1

0
(∫

1

0
𝑦3𝑒𝑥𝑦2 d𝑦) d𝑥 = ∫

1

0
(∫

1

0
𝑦3𝑒𝑥𝑦2 d𝑥) d𝑦 (Fubini)

= ∫
1

0
[

𝑦3𝑒𝑥𝑦2

𝑦2 ]
1

0

d𝑦

= ∫
1

0
𝑦(𝑒𝑦2 − 1) d𝑦

= [
𝑒𝑦2

2
−

𝑦2

2
]

1

0

=
𝑒
2

− 1.

Corollary 5.25 :  Let 𝜑, 𝜓 : [𝑎, 𝑏] → ℝ be continuous and let

𝐷 = {(𝑥, 𝑦) | 𝑥 ∈ [𝑎, 𝑏] and 𝜑(𝑥) ≤ 𝑦 ≤ 𝜓(𝑥)} ⊂ ℝ2.

Suppose that 𝑓 : 𝐷 → ℝ is continuous. Then

∫
𝐷

𝑓 = ∫
𝑏

𝑎
(∫

𝜓(𝑥)

𝜑(𝑥)
𝑓(𝑥, 𝑦) d𝑦) d𝑥.

Proof :  Notice that 𝜕𝐷 has content zero because it is the finite union of graphs of
continuous functions on compact sets. By Corollary 5.18, 𝑓  is integrable. Let 𝐼 =
[𝑎, 𝑏] × [𝑐, 𝑑] containing 𝐷 and ̃𝑓  the extension of 𝑓  to 𝐼  by 𝑓(𝑥) = 0 if 𝑥 ∉ 𝐷. For 𝑥 ∈
[𝑎, 𝑏] fixed, the function 𝑦 ↦ ̃𝑓(𝑥, 𝑦) is continuous on [𝑐, 𝑑] except at 𝜑(𝑥) and 𝜓(𝑥). By
Fubini’s Theorem (Theorem 5.22):

∫
𝐷

𝑓 = ∫
𝐼

̃𝑓 = ∫
𝑏

𝑎
∫

𝑑

𝑐

̃𝑓(𝑥, 𝑦) d𝑦 d𝑥

= ∫
𝑏

𝑎
∫

𝜓(𝑥)

𝜑(𝑥)
𝑓(𝑥, 𝑦) d𝑦 d𝑥.

□
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Example :  Let 𝐷 = {(𝑥, 𝑦) | 1 ≤ 𝑥 ≤ 3, 𝑥2 ≤ 𝑦 ≤ 𝑥2 + 1}. Compute the content (the
area) of 𝐷.

Solution :  We have by Corollary 5.25 that

∫
𝐷

1 = ∫
3

1
∫

𝑥2+1

𝑥2

1 d𝑦 d𝑥 = ∫
3

1
(𝑥2 + 1) − 𝑥2 d𝑦 = ∫

3

1
1 d𝑦 = 2.

□

Example :  Compute ∫
𝐷

𝑓  where 𝑓(𝑥, 𝑦, 𝑧) = 𝑦 and 𝐷 is the region bound by the plane
𝑥 = 𝑦 = 𝑧 = 0 and 𝑥 + 𝑦 + 𝑧 = 1.

Solution :  We can describe 𝐷 as follows:

0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 𝑥 − 1, 0 ≤ 𝑧 ≤ 1 − 𝑥 − 𝑦.

Thus by Fubini’s Theorem (Theorem 5.22) and Corollary 5.25 we have

∫
𝐷

𝑓 = ∫
[0,1]3

∼ 𝑓

= ∫
[0,1]

∫
[0,1]2

̃𝑓

= ∫
1

0
∫

1−𝑥

0
∫

1−𝑥−𝑦

0
𝑦 d𝑧 d𝑦 d𝑥

=
1
24

.

□

Note :  Other ways to describe 𝐷 could be, for example,

0 ≤ 𝑧 ≤ 1, 0 ≤ 𝑥 ≤ 1 − 𝑧, 0 ≤ 𝑦 ≤ 1 − 𝑧 − 𝑥.

Change of variables

Consider the function 𝑓(𝑥, 𝑦) = 1
(𝑥2+𝑦2)

3
2

 define on

𝐷 = {(𝑥, 𝑦) | 1 ≤ 𝑥2 + 𝑦2 ≤ 4}.

We wish to compute ∫
𝐷

𝑓 .

The idea is to use polar coordinates. Suppose 𝑔(𝑟, 𝜃) = (𝑟 cos 𝜃, 𝑟 sin 𝜃) then 𝐷 = 𝑔(𝐴) where

𝐴 = {(𝑟, 𝜃) | 1 ≤ 𝑟 ≤ 2, 0 ≤ 𝜃 ≤ 2𝜋}.

Hence 𝐷 is replaced by a rectangle. Also (𝑓 ∘ 𝑔)(𝑟, 𝜃) = 1
𝑟3  so everything looks simple. Can

we compute ∫
𝐷

𝑓  in terms of 𝑓 ∘ 𝑔?

Consider an infinitesmal pizza-like box in polar coordinates:

The area of the shaded region is

𝑟2 d𝜃
2

−
(𝑟2 − d𝑟) d𝜃

2
≈ 𝑟 d𝜃

if d𝜃 ≈ 0. So

∫
𝐷

𝑓 = ∫
𝐴

𝑓 ∘ 𝑔 d𝐴 = ∫
𝐴

𝑓(𝑟 cos 𝜃, 𝑟 sin 𝜃)𝑟 d𝑟 d𝜃.

Theorem 5.26 (Change of variables) :  Let ⌀ ≠ 𝑈 ⊂ ℝ𝑁  be open and let ⌀ ≠ 𝐾 ⊂ 𝑈  be
compact with content. Suppose 𝑔 : 𝑈 → ℝ𝑁  is continuously differentiable and suppose
that there exists 𝑍 ⊂ 𝐾 with content zero such that
1. 𝑔 is injective on 𝐾 ∖ 𝑍 , and
2. det 𝐽𝑔(𝑥) ≠ 0 for all 𝑥 ∈ 𝐾 ∖ 𝑍 .

Then 𝑔(𝐾) has content and for every 𝑓 : 𝑔(𝐾) → ℝ continuous we have

∫
𝑔(𝐾)

𝑓 = ∫
𝐾

(𝑓 ∘ 𝑔)|det 𝐽𝑔|

where det 𝐽𝑔 : 𝐾 → ℝ is defined as 𝑥 ↦ det 𝐽𝑔(𝑥).

Proof :  While the proof is not provided, the idea of the proof is as follows:

Suppose 𝐼 = [𝑎1, 𝑏1] × ⋯ × [𝑎𝑁 , 𝑏𝑁 ], 𝑎 = (𝑎1, …, 𝑎𝑁). Then

𝐼 = {𝑎 + ℎ1𝑒1 + ℎ2𝑒2 + ⋯ + ℎ𝑁𝑒𝑁 | 0 ≤ ℎ𝑘 ≤ 𝑙𝑘, 𝑘 = 1, …, 𝑁}

where 𝑙𝑘 = 𝑏𝑘 − 𝑎𝑘. If 𝐼  is very small,

𝑔(𝐼) ≈
⎩{
⎨
{⎧

𝑔(𝑎) + (𝐷𝑔)(𝑎)
⎣
⎢
⎡ℎ1

⋮
ℎ𝑁⎦

⎥
⎤

| 0 ≤ ℎ𝑘 ≤ 𝑙𝑘, 𝑘 = 1, …, 𝑁
⎭}
⎬
}⎫

(𝐷𝑔)(𝑎) = [(𝐷𝑔)(𝑎)𝑒1 ⋯ (𝐷𝑔)(𝑎)𝑒𝑁 ].

The column vectors are linearly independent. In the case of 𝑁 = 3 this look like:

This forms a parallelipied determined by the vectors 𝑙𝑖(𝐷𝑔)(𝑎)𝑒𝑖, 𝑖 = 1, 2, 3. We have

vol(par) = |det[𝑙1(𝐷𝑔)(𝑎)𝑒1 𝑙2(𝐷𝑔)(𝑎)𝑒2 𝑙3(𝐷𝑔)(𝑎)𝑒3]|

= 𝑙1𝑙2𝑙3|det 𝐽𝑔(𝑎)|

= 𝜇(𝐼)|det 𝐽𝑔(𝑎)|.

This can be extended to 𝑁 -dimensions. Thus

𝜇(𝑔(𝐼)) ≈ 𝜇(𝐼)|det 𝐽𝑔(𝑎)| = ∫
𝐼
|det 𝐽𝑔|.

In general, take 𝑃  a partition of 𝐼 ,

∫
𝑔(𝐾)

𝑓 ∼ ∑
𝛼∈𝑃

∫
𝑔(𝐼𝛼)

𝑓

= ∑
𝛼∈𝑃

𝑓(𝑦𝛼) ∫
𝑔(𝐼𝛼)

𝑓

= ∑
𝛼∈𝑃

𝑓(𝑦𝛼)𝜇(𝑔(𝐼𝛼))

= ∑
𝛼∈𝑃

𝑓(𝑦𝛼) ∫
𝐼𝛼

|det 𝐽𝑔|.

□

Example 5.27 :  Back to the example from the start. Consider 𝑔(𝑟, 𝜃) = (𝑟 cos 𝜃, 𝑟 sin 𝜃),
then 𝑔 ∈ 𝐶1(ℝ2, ℝ2). We have

𝐽𝑔(𝑟, 𝜃) = [cos 𝜃
sin 𝜃

−𝑟 sin 𝜃
𝑟 cos 𝜃

]

so det 𝐽𝑔(𝑟, 𝜃) = 𝑟. Notice that if 𝐴 = [0, 2] × [0, 2𝜋], then det 𝐽𝑔(𝑟, 𝜃) ≠ 0 on 𝐴 and 𝑔
is injective on [0, 2] × [0, 2𝜋). Since [0, 2] × {2𝜋} has content zero, we apply the change
of variables theorem (Theorem 5.26):

∫
𝐷

𝑓 = ∫
𝐴

𝑓(𝑟 cos 𝜃, 𝑟 sin 𝜃)𝑟 d𝑟 d𝜃

= ∫
2

1
∫

2𝜋

0

1
𝑟2 d𝜃 d𝑟

= ∫
2

1

2𝜋
𝑟2 d𝑟

= 𝜋.

Integration with cylindrical coordinates

The cylindrical coorindates in ℝ3 are

𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃, 𝑧 = 𝑧.

Thus

𝑔 : ℝ3 → ℝ3

𝑔(𝑟, 𝜃, 𝑧) = (𝑟 cos 𝜃, 𝑟 sin 𝜃, 𝑧)

is continuously differentiable and

𝐽𝑔(𝑟, 𝜃, 𝑧) =
⎣
⎢
⎡cos 𝜃

sin 𝜃
0

−𝑟 sin 𝜃
𝑟 cos 𝜃

0

0
0
1⎦
⎥
⎤.

Thus det 𝐽𝑔(𝑟, 𝜃, 𝑧) = 𝑟.

Example :  Find the volume of the region 𝐷 in ℝ3 above the paraboloid 𝑧 = 𝑥2 + 𝑦2,
and inside the sphere 𝑥2 + 𝑦2 + 𝑧2 = 12.

Figure 22: credit: desmos.

We have 𝑥2 + 𝑦2 = 𝑟2, so 𝑧 = 𝑥2 + 𝑦2. With the sphere, 𝑧 =
√

12 − 𝑟2. Thus 0 ≤ 𝜃 ≤
2𝜋 and 𝑟2 ≤ 𝑧 ≤

√
12 − 𝑟2. We have 0 ≤ 𝑟 ≤ 𝑟max where 𝑟max is the value of 𝑟 for

where the parabaloid meets the sphere. We have

𝑟2
max + 𝑟4

max = 12 ⟹ 𝑟2
max + 𝑟4

max − 12 = 0

⟹ (𝑟2
max − 3)(𝑟2

max − 4) = 0.

This yields 𝑟max = ±
√

3, but 𝑟 is non-negative so 𝑟max =
√

3. Hence 𝐷 = 𝑔(𝐾), where

𝑔(𝑟, 𝜃, 𝑧) = (𝑟 cos 𝜃, 𝑟 sin 𝜃, 𝑧),

𝐾 = {(𝑟, 𝜃, 𝑧) | 0 ≤ 𝑟 ≤
√

3, 0 ≤ 𝜃 ≤ 2𝜋, 𝑟2 ≤ 𝑧 ≤
√

12 − 𝑟2}.

By the change of variables theorem,

vol(𝐷) = 𝜇(𝐷) = ∫
𝐷

1

= ∫
𝐾

𝑟 d𝑧 d𝜃 d𝑟

= ∫
√

3

0
∫

2𝜋

0
∫

√
12−𝑟2

𝑟2

𝑟 d𝑧 d𝜃 d𝑟

=
(12)

3
2

3
.
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Spherical coordinates

In the system of spherical coordinates we have three coordinate axes:

• 𝜌: distance to the origin so that 𝑥2 + 𝑦2 + 𝑧2 = 𝜌2,
• 𝜃: longitude, angle from the positive 𝑥-axis, 0 ≤ 𝜃 ≤ 2𝜋,
• 𝜑: latutude, angle from the positive 𝑧-axis, 0 ≤ 𝜑 ≤ 𝜋.

We wish to calculates (𝑥, 𝑦, 𝑧) in terms of (𝜌, 𝜃, 𝜑).
• 𝑧 = 𝜌 cos 𝜑,
• 𝑟 = 𝜌 sin 𝜑,
• 𝑥 = 𝑟 cos 𝜃 = 𝜌 sin 𝜑 cos 𝜃,
• 𝑦 = 𝑟 sin 𝜃 = 𝜌 sin 𝜑 sin 𝜃.

Consider 𝑔 : ℝ3 → ℝ3 defined by

𝑔(𝜌, 𝜃, 𝜑) = (𝜌 sin 𝜑 cos 𝜃, 𝜌 sin 𝜑 sin 𝜃, 𝜌 cos 𝜑).

Then 𝑔 ∈ 𝐶2(ℝ3, ℝ3) and 𝑔 is injective on {(𝜌, 𝜃, 𝜑) | 𝜌 > 0, 0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝜑 ≤ 𝜋}. We
have

𝐽𝑔(𝜌, 𝜃, 𝜑) =

⎣
⎢⎢
⎡cos 𝜃 sin 𝜑

sin 𝜃 sin 𝜑
cos 𝜑

−𝜌 sin 𝜃 sin 𝜑
𝜌 cos 𝜃 sin 𝜑

0

𝜌 cos 𝜃 cos 𝜑
𝜌 sin 𝜃 cos 𝜑

−𝜌 sin 𝜑 ⎦
⎥⎥
⎤

,

det 𝐽𝑔(𝜌, 𝜃, 𝜑) = −𝜌2 sin 𝜑.

Hence det 𝐽𝑔(𝜌, 𝜃, 𝜑) ≠ 0 if 𝜌 ≠ 0 and 𝜑 ≠ 0, 𝜋.

Example :
• If 𝜌 is constant, say 𝜌 = 𝑟, we get the sphere of radius 𝑟.
• If 𝜑 is constant with 𝜑 ≠ 0, 𝜋, we get the cone with vertex at the origin.

Example :  Compute the volume of the sphere with radius 𝑟 using spherical
coordinates.

Solution :  We have 𝐷 = {(𝑥, 𝑦, 𝑧) | 𝑥2 + 𝑦2 + 𝑧2 ≤ 𝑟2}, with 𝐷 = 𝑔(𝐾) where

𝑔(𝜌, 𝜃, 𝜑) = (𝜌 sin 𝜑 cos 𝜃, 𝜌 sin 𝜑 sin 𝜃, 𝜌 cos 𝜑),
𝐾 = {(𝜌, 𝜃, 𝜑) | 0 ≤ 𝜌 ≤ 𝑟, 0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝜑 ≤ 𝜋}.

By the change of variables theorem we get

vol(𝐷) = 𝜇(𝐷) = ∫
𝐾

|det 𝐽𝑔|

= ∫
𝑟

0
∫

𝜋

0
∫

2𝜋

0
𝜌2 sin 𝜑 d𝜃 d𝜑 d𝑟

= 2𝜋 ∫
2

0
[−𝜌2 cos 𝜑]𝜋

0
d𝑟

= 4𝜋 ∫
2

0
𝜌2 d𝑟

=
4𝜋𝑟3

3
.

□

https://bryandeng.ca
https://www.desmos.com/3d
https://www.desmos.com/3d
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